BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1730029)

  • 1. Phenoloxidase catalyzed coupling of catechols. Identification of novel coupling products.
    Andersen SO; Jacobsen JP; Bojesen G; Roepstorff P
    Biochim Biophys Acta; 1992 Jan; 1118(2):134-8. PubMed ID: 1730029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid halogen substitution and dibenzodioxin formation during tyrosinase-catalyzed oxidation of 4-halocatechols.
    Stratford MR; Riley PA; Ramsden CA
    Chem Res Toxicol; 2011 Mar; 24(3):350-6. PubMed ID: 21306115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols.
    Suderman RJ; Dittmer NT; Kanost MR; Kramer KJ
    Insect Biochem Mol Biol; 2006 Apr; 36(4):353-65. PubMed ID: 16551549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.
    Korytowski W; Sarna T; Kalyanaraman B; Sealy RC
    Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification by electron spin resonance spectroscopy of the primary product of tyrosinase-catalyzed catechol oxidation.
    MASON HS; SPENCER E; YAMAZAKI I
    Biochem Biophys Res Commun; 1961 Mar; 4():236-8. PubMed ID: 13767818
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxidative calcium release from catechol.
    Riley PA; Stratford MR
    Bioorg Med Chem Lett; 2015 Apr; 25(7):1453-4. PubMed ID: 25740160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of hydroquinone on tyrosinase kinetics.
    Stratford MR; Ramsden CA; Riley PA
    Bioorg Med Chem; 2012 Jul; 20(14):4364-70. PubMed ID: 22698780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of catechol structure on the suicide-inactivation of tyrosinase.
    Ramsden CA; Stratford MR; Riley PA
    Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase.
    Cooksey CJ; Garratt PJ; Land EJ; Pavel S; Ramsden CA; Riley PA; Smit NP
    J Biol Chem; 1997 Oct; 272(42):26226-35. PubMed ID: 9334191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosinase-catalyzed unusual oxidative dimerization of 1,2-dehydro-N-acetyldopamine.
    Sugumaran M; Dali H; Semensi V; Hennigan B
    J Biol Chem; 1987 Aug; 262(22):10546-9. PubMed ID: 3112146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reactions of nascent quinones with methyl beta-alanate in glacial acetic acid and in aqueous solution (author's transl)].
    Peter MG
    Z Naturforsch C Biosci; 1978; 33(11-12):912-8. PubMed ID: 154228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase.
    Sugumaran M; Nellaiappan K; Valivittan K
    Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of L-serine. Spectrophotometric determination of intermediates.
    Cabanes J; García-Cánovas F; García-Carmona F
    Biochim Biophys Acta; 1987 Aug; 914(2):190-7. PubMed ID: 3111537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ring-expanded product with enhanced tyrosinase inhibitory activity from classical Fe-catalyzed oxidation of rosmarinic acid, a potent antioxidative Lamiaceae polyphenol.
    Fujimoto A; Shingai Y; Nakamura M; Maekawa T; Sone Y; Masuda T
    Bioorg Med Chem Lett; 2010 Dec; 20(24):7393-6. PubMed ID: 21041086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of diethylstilbestrol: identification of a catechol derived from dienestrol.
    Weidenfeld J; Carter P; Reinhold VN; Tanner SB; Engel LL
    Biomed Mass Spectrom; 1978 Oct; 5(10):587-90. PubMed ID: 106901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of benzene and toluene to catechols by phenol hydroxylase from Arthrobacter sp. W1.
    Ma F; Shi SN; Sun TH; Li A; Zhou JT; Qu YY
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5097-103. PubMed ID: 22854893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone.
    Sugumaran M
    Arch Biochem Biophys; 2000 Jun; 378(2):404-10. PubMed ID: 10860558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.