BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 17300523)

  • 1. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis.
    Huvos PE
    J Eukaryot Microbiol; 2007; 54(1):73-82. PubMed ID: 17300523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A member of a repeat family is the source of an insertion-deletion polymorphism inside a developmentally eliminated sequence of Tetrahymena thermophila.
    Huvos P
    J Mol Biol; 2004 Mar; 336(5):1061-73. PubMed ID: 15037069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular structure in developmentally eliminated DNA in Tetrahymena may be a consequence of frequent insertions and deletions.
    Huvos P
    J Mol Biol; 2004 Mar; 336(5):1075-86. PubMed ID: 15037070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varied truncation and clustering characterize some short repeats identified in micronucleus-specific DNA of Tetrahymena thermophila.
    Huvos P
    Gene; 2009 Dec; 448(2):174-9. PubMed ID: 19619624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila.
    Saveliev SV; Cox MM
    EMBO J; 2001 Jun; 20(12):3251-61. PubMed ID: 11406601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent.
    Liu Y; Song X; Gorovsky MA; Karrer KM
    Eukaryot Cell; 2005 Feb; 4(2):421-31. PubMed ID: 15701804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.
    Saveliev SV; Cox MM
    EMBO J; 1996 Jun; 15(11):2858-69. PubMed ID: 8654384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micronucleus-limited sequence family in Tetrahymena thermophila: organization and sequence conservation.
    Tsao NN; Tsao SG; Pearlman RE
    Dev Genet; 1992; 13(1):75-9. PubMed ID: 1327599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila.
    Fillingham JS; Pearlman RE
    Eukaryot Cell; 2004 Apr; 3(2):288-301. PubMed ID: 15075259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cis-acting requirements in flanking DNA for the programmed elimination of mse2.9: a common mechanism for deletion of internal eliminated sequences from the developing macronucleus of Tetrahymena thermophila.
    Fillingham JS; Bruno D; Pearlman RE
    Nucleic Acids Res; 2001 Jan; 29(2):488-98. PubMed ID: 11139619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal eliminated sequences interrupting the Oxytricha 81 locus: allelic divergence, conservation, conversions, and possible transposon origins.
    Seegmiller A; Williams KR; Hammersmith RL; Doak TG; Witherspoon D; Messick T; Storjohann LL; Herrick G
    Mol Biol Evol; 1996 Dec; 13(10):1351-62. PubMed ID: 8952079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila.
    Cheng CY; Young JM; Lin CG; Chao JL; Malik HS; Yao MC
    Genes Dev; 2016 Dec; 30(24):2724-2736. PubMed ID: 28087716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental DNA rearrangements and micronucleus-specific sequences in five species within the Tetrahymena pyriformis species complex.
    Huvos P
    Genetics; 1995 Nov; 141(3):925-36. PubMed ID: 8582637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whats, hows and whys of programmed DNA elimination in
    Noto T; Mochizuki K
    Open Biol; 2017 Oct; 7(10):. PubMed ID: 29021213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and sequencing of four new metallothionein genes from Tetrahymena thermophila and T. pigmentosa: evolutionary relationships in Tetrahymena MT family.
    Boldrin F; Santovito G; Negrisolo E; Piccinni E
    Protist; 2003 Oct; 154(3-4):431-42. PubMed ID: 14658499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats.
    Huvos PE; Wu M; Gorovsky MA
    J Eukaryot Microbiol; 1998; 45(2):189-97. PubMed ID: 9561773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for the origin of internal eliminated segments (IESs) and gene rearrangement in stichotrichous ciliates.
    Ehrenfeucht A; Prescott DM; Rozenberg G
    J Theor Biol; 2007 Jan; 244(1):108-14. PubMed ID: 16959268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and functional evolution of Tetrahymena metallothioneins: new insights into the gene family of Tetrahymena thermophila.
    Santovito G; Formigari A; Boldrin F; Piccinni E
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Jan; 144(4):391-7. PubMed ID: 17208053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila.
    Dave D; Wloga D; Gaertig J
    Methods Cell Biol; 2009; 93():1-20. PubMed ID: 20409809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.