These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17300887)

  • 61. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles.
    Noriega-Peláez EK; Mendoza-Muñoz N; Ganem-Quintanar A; Quintanar-Guerrero D
    Drug Dev Ind Pharm; 2011 Feb; 37(2):160-6. PubMed ID: 21073323
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization.
    Liang M; Davies NM; Toth I
    Int J Pharm; 2008 Oct; 362(1-2):141-6. PubMed ID: 18598746
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of acyl chains of phosphatidylcholines on the pharmacokinetics of menatetrenone incorporated in O/W lipid emulsions prepared with phosphatidylcholines and soybean oil in rats.
    Ueda K; Fujimoto M; Noto H; Sakaeda T; Iwakawa S
    J Pharm Pharmacol; 2004 Jul; 56(7):855-9. PubMed ID: 15233863
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.
    Schmidts T; Dobler D; Nissing C; Runkel F
    J Colloid Interface Sci; 2009 Oct; 338(1):184-92. PubMed ID: 19595359
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles.
    Cohen-Sela E; Chorny M; Koroukhov N; Danenberg HD; Golomb G
    J Control Release; 2009 Jan; 133(2):90-5. PubMed ID: 18848962
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solid lipid nanoparticle (SLN) formulations as a potential tool for the reduction of cytotoxicity of saponins.
    Van de Ven H; Vermeersch M; Shunmugaperumal T; Vandervoort J; Maes L; Ludwig A
    Pharmazie; 2009 Mar; 64(3):172-6. PubMed ID: 19348339
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of oil-in-water lipid emulsions prepared with fish oil or soybean oil on the growth of MCF-7 cells and HepG2 cells.
    Ueda K; Asai Y; Yoshimura Y; Iwakawa S
    J Pharm Pharmacol; 2008 Aug; 60(8):1069-75. PubMed ID: 18644199
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Nov; 315(1):307-12. PubMed ID: 17662299
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles.
    Yuan H; Jiang SP; Du YZ; Miao J; Zhang XG; Hu FQ
    Colloids Surf B Biointerfaces; 2009 May; 70(2):248-53. PubMed ID: 19185474
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: II. In vitro transport study.
    Rao SV; Agarwal P; Shao J
    Int J Pharm; 2008 Oct; 362(1-2):10-5. PubMed ID: 18640797
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prooxidant mechanisms of free fatty acids in stripped soybean oil-in-water emulsions.
    Waraho T; Cardenia V; Rodriguez-Estrada MT; McClements DJ; Decker EA
    J Agric Food Chem; 2009 Aug; 57(15):7112-7. PubMed ID: 19572645
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery.
    Sayin B; Somavarapu S; Li XW; Thanou M; Sesardic D; Alpar HO; Senel S
    Int J Pharm; 2008 Nov; 363(1-2):139-48. PubMed ID: 18662762
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions.
    Sigward E; Mignet N; Rat P; Dutot M; Muhamed S; Guigner JM; Scherman D; Brossard D; Crauste-Manciet S
    Int J Nanomedicine; 2013; 8():611-25. PubMed ID: 23403891
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solid lipid nanoparticles and nanoemulsions containing ceramides: preparation and physicochemical characterization.
    Deli G; Hatziantoniou S; Nikas Y; Demetzos C
    J Liposome Res; 2009; 19(3):180-8. PubMed ID: 19552579
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles.
    Wilson B; Samanta MK; Santhi K; Kumar KP; Paramakrishnan N; Suresh B
    Eur J Pharm Biopharm; 2008 Sep; 70(1):75-84. PubMed ID: 18472255
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Induction of PDGF-B in TCA-treated epidermal keratinocytes.
    Yonei N; Kanazawa N; Ohtani T; Furukawa F; Yamamoto Y
    Arch Dermatol Res; 2007 Nov; 299(9):433-40. PubMed ID: 17724602
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme.
    Cheng MB; Wang JC; Li YH; Liu XY; Zhang X; Chen DW; Zhou SF; Zhang Q
    J Control Release; 2008 Jul; 129(1):41-8. PubMed ID: 18474405
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Temperature and cosurfactant effects on lidocaine release from submicron oil in water emulsions.
    Lostritto RT; Silvestri SL
    J Parenter Sci Technol; 1987; 41(6):220-4. PubMed ID: 3437373
    [No Abstract]   [Full Text] [Related]  

  • 79. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development.
    Rao SV; Shao J
    Int J Pharm; 2008 Oct; 362(1-2):2-9. PubMed ID: 18650038
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhaled Solid Lipid Microparticles to target alveolar macrophages for tuberculosis.
    Maretti E; Rossi T; Bondi M; Croce MA; Hanuskova M; Leo E; Sacchetti F; Iannuccelli V
    Int J Pharm; 2014 Feb; 462(1-2):74-82. PubMed ID: 24374224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.