BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 17301029)

  • 21. Improved ROS measurement in root hair cells.
    Juárez SP; Mangano S; Estevez JM
    Methods Mol Biol; 2015; 1242():67-71. PubMed ID: 25408444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.
    Foreman J; Demidchik V; Bothwell JH; Mylona P; Miedema H; Torres MA; Linstead P; Costa S; Brownlee C; Jones JD; Davies JM; Dolan L
    Nature; 2003 Mar; 422(6930):442-6. PubMed ID: 12660786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.
    Einset J; Winge P; Bones AM; Connolly EL
    Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases.
    Kaya H; Takeda S; Kobayashi MJ; Kimura S; Iizuka A; Imai A; Hishinuma H; Kawarazaki T; Mori K; Yamamoto Y; Murakami Y; Nakauchi A; Abe M; Kuchitsu K
    Plant J; 2019 Apr; 98(2):291-300. PubMed ID: 30570803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local positive feedback regulation determines cell shape in root hair cells.
    Takeda S; Gapper C; Kaya H; Bell E; Kuchitsu K; Dolan L
    Science; 2008 Feb; 319(5867):1241-4. PubMed ID: 18309082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection.
    Siddique S; Matera C; Radakovic ZS; Hasan MS; Gutbrod P; Rozanska E; Sobczak M; Torres MA; Grundler FM
    Sci Signal; 2014 Apr; 7(320):ra33. PubMed ID: 24714570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.
    Baxter-Burrell A; Yang Z; Springer PS; Bailey-Serres J
    Science; 2002 Jun; 296(5575):2026-8. PubMed ID: 12065837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs.
    Kuběnová L; Haberland J; Dvořák P; Šamaj J; Ovečka M
    Plant Physiol; 2023 Nov; 193(4):2337-2360. PubMed ID: 37666000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.
    Kawachi M; Kobae Y; Mori H; Tomioka R; Lee Y; Maeshima M
    Plant Cell Physiol; 2009 Jun; 50(6):1156-70. PubMed ID: 19433490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Rop GTPase switch controls multiple developmental processes in Arabidopsis.
    Li H; Shen JJ; Zheng ZL; Lin Y; Yang Z
    Plant Physiol; 2001 Jun; 126(2):670-84. PubMed ID: 11402196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth.
    Liu P; Li RL; Zhang L; Wang QL; Niehaus K; Baluska F; Samaj J; Lin JX
    Plant J; 2009 Oct; 60(2):303-13. PubMed ID: 19566595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking.
    Lavy M; Bloch D; Hazak O; Gutman I; Poraty L; Sorek N; Sternberg H; Yalovsky S
    Curr Biol; 2007 Jun; 17(11):947-52. PubMed ID: 17493810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADPH oxidase involvement in cellular integrity.
    Macpherson N; Takeda S; Shang Z; Dark A; Mortimer JC; Brownlee C; Dolan L; Davies JM
    Planta; 2008 May; 227(6):1415-8. PubMed ID: 18317797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free sphingobases induce RBOHD-dependent reactive oxygen species production in Arabidopsis leaves.
    Peer M; Bach M; Mueller MJ; Waller F
    FEBS Lett; 2011 Oct; 585(19):3006-10. PubMed ID: 21856300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
    Takemoto D; Tanaka A; Scott B
    Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts.
    Rossary A; Arab K; Steghens JP
    Biochem J; 2007 Aug; 406(1):77-83. PubMed ID: 17472580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
    Kawarazaki T; Kimura S; Iizuka A; Hanamata S; Nibori H; Michikawa M; Imai A; Abe M; Kaya H; Kuchitsu K
    Biochim Biophys Acta; 2013 Dec; 1833(12):2775-2780. PubMed ID: 23872431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions.
    Venus Y; Oelmüller R
    Mol Plant; 2013 May; 6(3):872-86. PubMed ID: 23118477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana.
    Livanos P; Galatis B; Quader H; Apostolakos P
    Cytoskeleton (Hoboken); 2012 Jan; 69(1):1-21. PubMed ID: 21976360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.