These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17301186)

  • 21. The Simon Effect With Saccadic Eye Movements.
    Lugli L; Baroni G; Nicoletti R; Umiltà C
    Exp Psychol; 2016 Mar; 63(2):107-16. PubMed ID: 27221601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.
    Talanow T; Kasparbauer AM; Steffens M; Meyhöfer I; Weber B; Smyrnis N; Ettinger U
    Brain Cogn; 2016 Aug; 107():37-47. PubMed ID: 27363008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switching, plasticity, and prediction in a saccadic task-switch paradigm.
    Barton JJ; Greenzang C; Hefter R; Edelman J; Manoach DS
    Exp Brain Res; 2006 Jan; 168(1-2):76-87. PubMed ID: 16096781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.
    Pierce JE; McDowell JE
    J Neurophysiol; 2016 Feb; 115(2):763-72. PubMed ID: 26609113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primate antisaccades. I. Behavioral characteristics.
    Amador N; Schlag-Rey M; Schlag J
    J Neurophysiol; 1998 Oct; 80(4):1775-86. PubMed ID: 9772238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eye position-dependent activity in the primary visual area as revealed by fMRI.
    Andersson F; Joliot M; Perchey G; Petit L
    Hum Brain Mapp; 2007 Jul; 28(7):673-80. PubMed ID: 17089375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct neural correlates for volitional generation and inhibition of saccades.
    Reuter B; Kaufmann C; Bender J; Pinkpank T; Kathmann N
    J Cogn Neurosci; 2010 Apr; 22(4):728-38. PubMed ID: 19366286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attention allocation before antisaccades.
    Klapetek A; Jonikaitis D; Deubel H
    J Vis; 2016; 16(1):11. PubMed ID: 26790843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades.
    DeSimone JC; Weiler J; Aber GS; Heath M
    Vision Res; 2014 Mar; 96():17-24. PubMed ID: 24412739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans.
    Ettinger U; Antonova E; Crawford TJ; Mitterschiffthaler MT; Goswani S; Sharma T; Kumari V
    Neuroimage; 2005 Jan; 24(2):487-94. PubMed ID: 15627590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks.
    Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T
    Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.
    Heinen K; Feredoes E; Weiskopf N; Ruff CC; Driver J
    Cereb Cortex; 2014 Nov; 24(11):2815-21. PubMed ID: 23794715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain activation during antisaccades in unaffected relatives of schizophrenic patients.
    Raemaekers M; Ramsey NF; Vink M; van den Heuvel MP; Kahn RS
    Biol Psychiatry; 2006 Mar; 59(6):530-5. PubMed ID: 16165103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. fMRI activation in the human frontal eye field is correlated with saccadic reaction time.
    Connolly JD; Goodale MA; Goltz HC; Munoz DP
    J Neurophysiol; 2005 Jul; 94(1):605-11. PubMed ID: 15590732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of right inferior frontal gyrus during response inhibition across response modalities.
    Chikazoe J; Konishi S; Asari T; Jimura K; Miyashita Y
    J Cogn Neurosci; 2007 Jan; 19(1):69-80. PubMed ID: 17214564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks.
    Pierce JE; McDowell JE
    Brain Cogn; 2017 Jul; 115():12-20. PubMed ID: 28371646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.