BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17301946)

  • 1. Adenylate kinase in sea urchin embryonic cilia.
    Kinukawa M; Vacquier VD
    Cell Motil Cytoskeleton; 2007 Apr; 64(4):310-9. PubMed ID: 17301946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant sea urchin flagellar adenylate kinase.
    Kinukawa M; Vacquier VD
    J Biochem; 2007 Oct; 142(4):501-6. PubMed ID: 17761698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sea urchin sperm flagellar adenylate kinase with triplicated catalytic domains.
    Kinukawa M; Nomura M; Vacquier VD
    J Biol Chem; 2007 Feb; 282(5):2947-55. PubMed ID: 17145754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular chaperones in cilia and flagella: implications for protein turnover.
    Stephens RE; Lemieux NA
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):274-83. PubMed ID: 10602256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence, annotation and developmental expression of the sea urchin Ca(2+) -ATPase family.
    Jayantha Gunaratne H; Vacquier VD
    Gene; 2007 Aug; 397(1-2):67-75. PubMed ID: 17482382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-kinase in sea urchin eggs and embryos.
    Aguirre-Armenta B; López-Godínez J; Martínez-Cadena G; García-Soto J
    Dev Growth Differ; 2011 Jun; 53(5):704-14. PubMed ID: 21671918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa.
    Saudrais C; Fierville F; Loir M; Le Rumeur E; Cibert C; Cosson J
    Cell Motil Cytoskeleton; 1998; 41(2):91-106. PubMed ID: 9786085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration.
    Stephens RE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():683-92. PubMed ID: 8207090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An antiserum to the sea urchin 20 S egg dynein reacts with embryonic ciliary dynein but it does not react with the mitotic apparatus.
    Asai DJ
    Dev Biol; 1986 Dec; 118(2):416-24. PubMed ID: 2431933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciliation: A stressful event for Paracentrotus lividus embryos.
    Casano C; Roccheri MC; Onorato K; Cascino D; Gianguzza F
    Biochem Biophys Res Commun; 1998 Jul; 248(3):628-34. PubMed ID: 9703977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid induction of a hyperciliated phenotype in zinc-arrested sea urchin embryos by theophylline.
    Stephens RE
    J Exp Zool; 1994 Jun; 269(2):106-15. PubMed ID: 8207382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanism of ciliary and flagellar movement (author's transl)].
    Otokawa M; Watanabe Y
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):441-8. PubMed ID: 125905
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzyme activity in energy supply of spermatozoon motility in two taxonomically distant fish species (sterlet Acipenser ruthenus, Acipenseriformes and common carp Cyprinus carpio, Cypriniformes).
    Dzyuba V; Dzyuba B; Cosson J; Rodina M
    Theriogenology; 2016 Mar; 85(4):567-74. PubMed ID: 26483312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm.
    Tombes RM; Shapiro BM
    J Biol Chem; 1987 Nov; 262(33):16011-9. PubMed ID: 3680241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential incorporation of tubulin into the junctional region of ciliary outer doublet microtubules: a model for treadmilling by lattice dislocation.
    Stephens RE
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):130-40. PubMed ID: 11013393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myristoylated and nonmyristoylated pools of sea urchin sperm flagellar creatine kinase exist side-by-side: myristoylation is necessary for efficient lipid association.
    Quest AF; Harvey DJ; McIlhinney RA
    Biochemistry; 1997 Jun; 36(23):6993-7002. PubMed ID: 9188696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by ATP and activation by ADP in the regulation of flagellar movement in sea urchin sperm.
    Yoshimura A; Nakano I; Shingyoji C
    Cell Motil Cytoskeleton; 2007 Oct; 64(10):777-93. PubMed ID: 17685440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion.
    Tombes RM; Brokaw CJ; Shapiro BM
    Biophys J; 1987 Jul; 52(1):75-86. PubMed ID: 2955815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonemal activity relative to the 2D/3D-waveform conversion of the flagellum.
    Cibert C
    Cell Motil Cytoskeleton; 2002 Feb; 51(2):89-111. PubMed ID: 11921166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics.
    Stephens RE
    J Exp Zool; 2001 May; 289(6):335-49. PubMed ID: 11351321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.