BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17301946)

  • 21. Regulatory role of nucleotides in axonemal function.
    Kinoshita S; Miki-Noumura T; Omoto CK
    Cell Motil Cytoskeleton; 1995; 32(1):46-54. PubMed ID: 8674133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Halteria grandinella: a rapid swimming ciliate with a high frequency of ciliary beating.
    Ueyama S; Katsumaru H; Suzaki T; Nakaoka Y
    Cell Motil Cytoskeleton; 2005 Apr; 60(4):214-21. PubMed ID: 15754357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella.
    Inoue Y; Shingyoji C
    Cell Motil Cytoskeleton; 2007 Sep; 64(9):690-704. PubMed ID: 17630661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella.
    Nomura M; Vacquier VD
    Cell Motil Cytoskeleton; 2006 Sep; 63(9):582-90. PubMed ID: 16847896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FRAP analysis of molecular diffusion inside sea-urchin spermatozoa.
    Takao D; Kamimura S
    J Exp Biol; 2008 Nov; 211(Pt 22):3594-600. PubMed ID: 18978224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The sea urchin genome: where will it lead us?
    Davidson EH
    Science; 2006 Nov; 314(5801):939-40. PubMed ID: 17095689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenylate kinase is tightly bound to axonemes of Tetrahymena cilia.
    Nakamura K; Iitsuka K; Fujii T
    Comp Biochem Physiol B Biochem Mol Biol; 1999 Oct; 124(2):195-9. PubMed ID: 10584302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ciliogenesis in sea urchin embryos--a subroutine in the program of development.
    Stephens RE
    Bioessays; 1995 Apr; 17(4):331-40. PubMed ID: 7741725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase.
    Kan HE; Veltien A; Arnts H; Nabuurs CI; Luijten B; de Haan A; Wieringa B; Heerschap A
    NMR Biomed; 2009 Jun; 22(5):523-31. PubMed ID: 19156695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice.
    Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A
    Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical properties of ciliary, flagellar and cytoplasmic dyneins.
    Pallini V; Bugnoli M; Mencarelli C; Scapigliati G
    Symp Soc Exp Biol; 1982; 35():339-52. PubMed ID: 6223399
    [No Abstract]   [Full Text] [Related]  

  • 32. A soluble adenylyl cyclase from sea urchin spermatozoa.
    Nomura M; Beltrán C; Darszon A; Vacquier VD
    Gene; 2005 Jul; 353(2):231-8. PubMed ID: 15978750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP; Yukich JN; Bernd KK
    Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sea urchin embryonic cilia.
    Morris RL; Vacquier VD
    Methods Cell Biol; 2019; 150():235-250. PubMed ID: 30777178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantal tektin synthesis and ciliary length in sea-urchin embryos.
    Stephens RE
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():403-13. PubMed ID: 2592446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide-metabolizing enzymes in Chlamydomonas flagella.
    Watanabe T; Flavin M
    J Biol Chem; 1976 Jan; 251(1):182-92. PubMed ID: 397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus.
    Vega Thurber R; Epel D
    Dev Biol; 2007 Mar; 303(1):336-46. PubMed ID: 17174294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos.
    Semenova MN; Tsyganov DV; Yakubov AP; Kiselyov AS; Semenov VV
    ACS Chem Biol; 2008 Feb; 3(2):95-100. PubMed ID: 18278850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective incorporation of architectural proteins into terminally differentiated molluscan gill cilia.
    Stephens RE
    J Exp Zool; 1996 Apr; 274(5):300-9. PubMed ID: 8618104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.