These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17302415)
1. An IR study of protonation changes associated with heme-heme electron transfer in bovine cytochrome c oxidase. Iwaki M; Rich PR J Am Chem Soc; 2007 Mar; 129(10):2923-9. PubMed ID: 17302415 [TBL] [Abstract][Full Text] [Related]
2. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase. McMahon BH; Fabian M; Tomson F; Causgrove TP; Bailey JA; Rein FN; Dyer RB; Palmer G; Gennis RB; Woodruff WH Biochim Biophys Acta; 2004 Apr; 1655(1-3):321-31. PubMed ID: 15100047 [TBL] [Abstract][Full Text] [Related]
3. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase. Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655 [TBL] [Abstract][Full Text] [Related]
4. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy. Zaslavsky D; Sadoski RC; Wang K; Durham B; Gennis RB; Millett F Biochemistry; 1998 Oct; 37(42):14910-6. PubMed ID: 9778367 [TBL] [Abstract][Full Text] [Related]
5. The rate of internal heme-heme electron transfer in cytochrome C oxidase. Namslauer A; Brändén M; Brzezinski P Biochemistry; 2002 Aug; 41(33):10369-74. PubMed ID: 12173922 [TBL] [Abstract][Full Text] [Related]
6. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase. Parul D; Palmer G; Fabian M Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287 [TBL] [Abstract][Full Text] [Related]
7. FTIR studies of the CO and cyanide adducts of fully reduced bovine cytochrome c oxidase. Rich PR; Breton J Biochemistry; 2001 May; 40(21):6441-9. PubMed ID: 11371207 [TBL] [Abstract][Full Text] [Related]
8. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
9. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases. Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328 [TBL] [Abstract][Full Text] [Related]
10. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme. Capitanio N; Capitanio G; Minuto M; De Nitto E; Palese LL; Nicholls P; Papa S Biochemistry; 2000 May; 39(21):6373-9. PubMed ID: 10828951 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical, FT-IR and UV/VIS spectroscopic properties of the caa3 oxidase from T. thermophilus. Hellwig P; Soulimane T; Mäntele W Eur J Biochem; 2002 Oct; 269(19):4830-8. PubMed ID: 12354114 [TBL] [Abstract][Full Text] [Related]
12. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods. Dodson ED; Zhao XJ; Caughey WS; Elliott CM Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved FT-IR studies on the CO adduct of Paracoccus denitrificans cytochrome c oxidase: comparison of the fully reduced and the mixed valence form. Rost B; Behr J; Hellwig P; Richter OM; Ludwig B; Michel H; Mäntele W Biochemistry; 1999 Jun; 38(23):7565-71. PubMed ID: 10360954 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic and kinetic investigation of the fully reduced and mixed valence states of ba3-cytochrome c oxidase from Thermus thermophilus: a Fourier transform infrared (FTIR) and time-resolved step-scan FTIR study. Koutsoupakis C; Soulimane T; Varotsis C J Biol Chem; 2012 Oct; 287(44):37495-507. PubMed ID: 22927441 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer. Brzezinski P; Malmström BG Biochim Biophys Acta; 1987 Oct; 894(1):29-38. PubMed ID: 2444256 [TBL] [Abstract][Full Text] [Related]
16. Proton-controlled electron transfer in cytochrome c oxidase: functional role of the pathways through Glu 286 and Lys 362. Brzezinski P; Adelroth P Acta Physiol Scand Suppl; 1998 Aug; 643():7-16. PubMed ID: 9789542 [TBL] [Abstract][Full Text] [Related]
17. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy. Ishigami I; Hikita M; Egawa T; Yeh SR; Rousseau DL Biochim Biophys Acta; 2015 Jan; 1847(1):98-108. PubMed ID: 25268561 [TBL] [Abstract][Full Text] [Related]
18. Kinetic coupling between electron and proton transfer in cytochrome c oxidase: simultaneous measurements of conductance and absorbance changes. Adelroth P; Sigurdson H; Hallén S; Brzezinski P Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12292-7. PubMed ID: 8901574 [TBL] [Abstract][Full Text] [Related]
19. Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site. Hallén S; Brzezinski P; Malmström BG Biochemistry; 1994 Feb; 33(6):1467-72. PubMed ID: 8312266 [TBL] [Abstract][Full Text] [Related]
20. Flash-photolysis of fully reduced and mixed-valence CO-bound Rhodobacter sphaeroides cytochrome c oxidase: heme spectral shifts. Szundi I; Ray J; Pawate A; Gennis RB; Einarsdóttir O Biochemistry; 2007 Nov; 46(44):12568-78. PubMed ID: 17929941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]