BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17302432)

  • 21. 6-deoxy-D-glucose and D-xylose: analogs for the study of D-glucose transport by mouse 3T3 cells.
    Romano AH; Connell ND
    J Cell Physiol; 1982 Apr; 111(1):77-82. PubMed ID: 7085771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum.
    Cermak R; Landgraf S; Wolffram S
    Br J Nutr; 2004 Jun; 91(6):849-55. PubMed ID: 15182388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.
    Castaneda F; Kinne RK
    Mol Cell Biochem; 2005 Dec; 280(1-2):91-8. PubMed ID: 16311909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of monosaccharides in kidney-cortex cells.
    Kleinzeller A; Kolínská J; Benes I
    Biochem J; 1967 Sep; 104(3):852-60. PubMed ID: 6049927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the D-allose-mediated regulation of sugar transport in Chinese hamster fibroblasts.
    Germinario RJ; Kristof A; Chang Z; Manuel S
    J Cell Physiol; 1990 Nov; 145(2):318-23. PubMed ID: 2246330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constitutive nitric oxide differentially regulates Na-H and Na-glucose cotransport in intestinal epithelial cells.
    Coon S; Kekuda R; Saha P; Talukder JR; Sundaram U
    Am J Physiol Gastrointest Liver Physiol; 2008 Jun; 294(6):G1369-75. PubMed ID: 18325982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters.
    Pajor AM; Randolph KM; Kerner SA; Smith CD
    J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of Na+-glucose cotransporter (SGLT1) in visceral and parietal mesothelium of rabbit pleura.
    Sironi C; Bodega F; Porta C; Zocchi L; Agostoni E
    Respir Physiol Neurobiol; 2007 Oct; 159(1):68-75. PubMed ID: 17652034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A
    J Membr Biol; 2003 Mar; 192(2):89-100. PubMed ID: 12682797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Foxl1 null mice have abnormal intestinal epithelia, postnatal growth retardation, and defective intestinal glucose uptake.
    Katz JP; Perreault N; Goldstein BG; Chao HH; Ferraris RP; Kaestner KH
    Am J Physiol Gastrointest Liver Physiol; 2004 Oct; 287(4):G856-64. PubMed ID: 15155178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SGLT inhibitors as new therapeutic tools in the treatment of diabetes.
    Kinne RK; Castaneda F
    Handb Exp Pharmacol; 2011; (203):105-26. PubMed ID: 21484569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C-terminal loop 13 of Na+/glucose cotransporter 1 contains both stereospecific and non-stereospecific sugar interaction sites.
    Wimmer B; Raja M; Hinterdorfer P; Gruber HJ; Kinne RK
    J Biol Chem; 2009 Jan; 284(2):983-91. PubMed ID: 19010790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter.
    Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P
    FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(gamma-glutamic acid).
    Sakuma S; Sagawa T; Masaoka Y; Kataoka M; Yamashita S; Shirasaka Y; Tamai I; Ikumi Y; Kida T; Akashi M
    J Control Release; 2009 Jan; 133(2):125-31. PubMed ID: 18977257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.
    Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E
    J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Sp1 and HNF1 transcription factors in SGLT1 regulation during chronic intestinal inflammation.
    Kekuda R; Saha P; Sundaram U
    Am J Physiol Gastrointest Liver Physiol; 2008 Jun; 294(6):G1354-61. PubMed ID: 18339704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sodium-dependent D-glucose transport protein of Helicobacter pylori.
    Psakis G; Saidijam M; Shibayama K; Polaczek J; Bettaney KE; Baldwin JM; Baldwin SA; Hope R; Essen LO; Essenberg RC; Henderson PJ
    Mol Microbiol; 2009 Jan; 71(2):391-403. PubMed ID: 19161491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monosaccharide transport by Eimeria tenella sporozoites.
    Smith CK; Lee DE
    J Parasitol; 1986 Feb; 72(1):163-9. PubMed ID: 3712172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymer-phloridzin conjugates as an anti-diabetic drug that inhibits glucose absorption through the Na+/glucose cotransporter (SGLT1) in the small intestine.
    Ikumi Y; Kida T; Sakuma S; Yamashita S; Akashi M
    J Control Release; 2008 Jan; 125(1):42-9. PubMed ID: 18006167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo.
    Matsuo A; Negoro T; Seo T; Kitao Y; Shindo M; Segawa H; Miyamoto K
    Eur J Pharmacol; 2005 Jul; 517(1-2):111-9. PubMed ID: 15961073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.