These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 17302437)

  • 1. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase.
    Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL
    Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase.
    Coe DM; Viola RE
    Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase.
    Born TL; Blanchard JS
    Biochemistry; 1999 Oct; 38(43):14416-23. PubMed ID: 10572016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Participation of Cys123alpha of Escherichia coli succinyl-CoA synthetase in catalysis.
    Hidber E; Brownie ER; Hayakawa K; Fraser ME
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):876-84. PubMed ID: 17642514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase.
    Goudarzi M; Born TL
    Extremophiles; 2006 Oct; 10(5):469-78. PubMed ID: 16708165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the active site of homoserine trans-succinylase.
    Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ
    FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoethylcysteine can replace the function of the essential active site lysine of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Bochar DA; Tabernero L; Stauffacher CV; Rodwell VW
    Biochemistry; 1999 Jul; 38(28):8879-83. PubMed ID: 10413460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.
    Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD
    J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280.
    Easley KE; Sommer BJ; Boanca G; Barycki JJ; Simpson MA
    Biochemistry; 2007 Jan; 46(2):369-78. PubMed ID: 17209547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HlyC, the internal protein acyltransferase that activates hemolysin toxin: role of conserved histidine, serine, and cysteine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Trent MS; Worsham LM; Ernst-Fonberg ML
    Biochemistry; 1999 Mar; 38(11):3433-9. PubMed ID: 10079090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of fungal homoserine transacetylase.
    Nazi I; Wright GD
    Biochemistry; 2005 Oct; 44(41):13560-6. PubMed ID: 16216079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate analysis of homoserine acyltransferase from Bacillus cereus.
    Ziegler K; Yusupov M; Bishop B; Born TL
    Biochem Biophys Res Commun; 2007 Sep; 361(2):510-5. PubMed ID: 17662245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli.
    Zhang W; Shi Q; Meroueh SO; Vakulenko SB; Mobashery S
    Biochemistry; 2007 Sep; 46(35):10113-21. PubMed ID: 17685588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe.
    Katerelos NA; Goodenough PW
    Biochemistry; 1996 Nov; 35(47):14763-72. PubMed ID: 8942638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for catalytic cysteine-histidine dyad in chalcone synthase.
    Suh DY; Kagami J; Fukuma K; Sankawa U
    Biochem Biophys Res Commun; 2000 Sep; 275(3):725-30. PubMed ID: 10973790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.