BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 17302465)

  • 1. Modeling the fragmentation dynamics of ionic clusters inside helium nanodroplets: the case of He100Ne4+.
    Bonhommeau D; Lake PT; Le Quiniou C; Lewerenz M; Halberstadt N
    J Chem Phys; 2007 Feb; 126(5):051104. PubMed ID: 17302465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.
    Bonhommeau D; Lewerenz M; Halberstadt N
    J Chem Phys; 2008 Feb; 128(5):054302. PubMed ID: 18266445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
    Bonhommeau D; Halberstadt N; Viel A
    J Chem Phys; 2006 Jan; 124(2):024328. PubMed ID: 16422604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.
    Bonhommeau D; Viel A; Halberstadt N
    J Chem Phys; 2004 Jun; 120(24):11359-62. PubMed ID: 15268166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelization of the fragmentation dynamics of krypton clusters (Kr(n),n=2-11) following electron impact ionization.
    Bonhommeau D; Bouissou T; Halberstadt N; Viel A
    J Chem Phys; 2006 Apr; 124(16):164308. PubMed ID: 16674136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets.
    Ferreira da Silva F; Jaksch S; Martins G; Dang HM; Dampc M; Denifl S; Märk TD; Limão-Vieira P; Liu J; Yang S; Ellis AM; Scheier P
    Phys Chem Chem Phys; 2009 Dec; 11(48):11631-7. PubMed ID: 20024436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation dynamics of argon clusters (Ar(n), n = 2 to 11) following electron-impact ionization: modeling and comparison with experiment.
    Bonhommeau D; Halberstadt N; Viel A
    J Chem Phys; 2006 May; 124(18):184314. PubMed ID: 16709113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociative ionization of neon clusters Ne(n), n=3 to 14: a realistic multisurface dynamical study.
    Bonhommeau D; Viel A; Halberstadt N
    J Chem Phys; 2005 Aug; 123(5):054316. PubMed ID: 16108648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne
    Blancafort-Jorquera M; Vilà A; González M
    Phys Chem Chem Phys; 2019 Nov; 21(43):24218-24231. PubMed ID: 31661098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron attachment to formamide clusters in helium nanodroplets.
    Ferreira da Silva F; Denifl S; Märk TD; Doltsinis NL; Ellis AM; Scheier P
    J Phys Chem A; 2010 Feb; 114(4):1633-8. PubMed ID: 20055396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron impact ionization in helium nanodroplets: controlling fragmentation by active cooling of molecular ions.
    Lewis WK; Applegate BE; Sztáray J; Sztáray B; Baer T; Bemish RJ; Miller RE
    J Am Chem Soc; 2004 Sep; 126(36):11283-92. PubMed ID: 15355110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction dynamics inside superfluid helium nanodroplets: the formation of the Ne
    Vilà A; González M
    Phys Chem Chem Phys; 2016 Nov; 18(46):31869-31880. PubMed ID: 27841391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dynamics of an excited alkali atom in a noble gas cluster: lithium attached to a helium cluster.
    Pacheco AB; Thorndyke B; Reyes A; Micha DA
    J Chem Phys; 2007 Dec; 127(24):244504. PubMed ID: 18163688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron impact ionization of water-doped superfluid helium nanodroplets: observation of He(H(2)O)(n)(+) clusters.
    Yang S; Brereton SM; Nandhra S; Ellis AM; Shang B; Yuan LF; Yang J
    J Chem Phys; 2007 Oct; 127(13):134303. PubMed ID: 17919020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope enrichment in neon clusters grown in helium nanodroplets.
    Tiefenthaler L; Kollotzek S; Gatchell M; Hansen K; Scheier P; Echt O
    J Chem Phys; 2020 Oct; 153(16):164305. PubMed ID: 33138400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron impact ionization of haloalkanes in helium nanodroplets.
    Yang S; Brereton SM; Wheeler MD; Ellis AM
    J Phys Chem A; 2006 Feb; 110(5):1791-7. PubMed ID: 16451009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation of HCN in optically selected mass spectrometry: nonthermal ion cooling in helium nanodroplets.
    Lewis WK; Bemish RJ; Miller RE
    J Chem Phys; 2005 Oct; 123(14):141103. PubMed ID: 16238367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase space theory of evaporation in neon clusters: the role of quantum effects.
    Calvo F; Parneix P
    J Phys Chem A; 2009 Dec; 113(52):14352-63. PubMed ID: 20028160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodissociation of HCl and small (HCl)m complexes in and on large Ar n clusters.
    Nahler NH; Farnik M; Buck U; Vach H; Gerber RB
    J Chem Phys; 2004 Jul; 121(3):1293-302. PubMed ID: 15260671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.