BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1044 related articles for article (PubMed ID: 17302740)

  • 1. Energy metabolism in tumor cells.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E
    FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?
    Moreno-Sánchez R; Rodríguez-Enríquez S; Saavedra E; Marín-Hernández A; Gallardo-Pérez JC
    Biofactors; 2009; 35(2):209-25. PubMed ID: 19449450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism transition in multi-cellular human tumor spheroids.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Avilés-Salas A; Marín-Hernández A; Carreño-Fuentes L; Maldonado-Lagunas V; Moreno-Sánchez R
    J Cell Physiol; 2008 Jul; 216(1):189-97. PubMed ID: 18264981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative metabolism in cancer growth.
    Ristow M
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):339-45. PubMed ID: 16778561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.
    Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer's sweet tooth.
    Bui T; Thompson CB
    Cancer Cell; 2006 Jun; 9(6):419-20. PubMed ID: 16766260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediary metabolism of fast-growth tumor cells.
    Rodríguez-Enríquez S; Moreno-Sánchez R
    Arch Med Res; 1998; 29(1):1-12. PubMed ID: 9556916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of energy metabolism in breast cancer brain metastases.
    Chen EI; Hewel J; Krueger JS; Tiraby C; Weber MR; Kralli A; Becker K; Yates JR; Felding-Habermann B
    Cancer Res; 2007 Feb; 67(4):1472-86. PubMed ID: 17308085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose avidity of carcinomas.
    Ortega AD; Sánchez-Aragó M; Giner-Sánchez D; Sánchez-Cenizo L; Willers I; Cuezva JM
    Cancer Lett; 2009 Apr; 276(2):125-35. PubMed ID: 18790562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.
    Xu RH; Pelicano H; Zhou Y; Carew JS; Feng L; Bhalla KN; Keating MJ; Huang P
    Cancer Res; 2005 Jan; 65(2):613-21. PubMed ID: 15695406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.
    Gatenby RA; Gawlinski ET
    Cancer Res; 2003 Jul; 63(14):3847-54. PubMed ID: 12873971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development.
    Jezek P; Plecitá-Hlavatá L; Smolková K; Rossignol R
    Int J Biochem Cell Biol; 2010 May; 42(5):604-22. PubMed ID: 19931409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production.
    Funes JM; Quintero M; Henderson S; Martinez D; Qureshi U; Westwood C; Clements MO; Bourboulia D; Pedley RB; Moncada S; Boshoff C
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6223-8. PubMed ID: 17384149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.
    Loiseau D; Morvan D; Chevrollier A; Demidem A; Douay O; Reynier P; Stepien G
    Mol Carcinog; 2009 Aug; 48(8):733-41. PubMed ID: 19347860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells.
    Weber K; Ridderskamp D; Alfert M; Hoyer S; Wiesner RJ
    Biol Chem; 2002 Feb; 383(2):283-90. PubMed ID: 11934266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.
    Yalcin A; Telang S; Clem B; Chesney J
    Exp Mol Pathol; 2009 Jun; 86(3):174-9. PubMed ID: 19454274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of cancer energy metabolism.
    Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Carreño-Fuentes L; Moreno-Sánchez R
    Mol Nutr Food Res; 2009 Jan; 53(1):29-48. PubMed ID: 19123180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.