BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17302819)

  • 1. Regulation of pyrG expression in Bacillus subtilis: CTP-regulated antitermination and reiterative transcription with pyrG templates in vitro.
    Jensen-MacAllister IE; Meng Q; Switzer RL
    Mol Microbiol; 2007 Mar; 63(5):1440-52. PubMed ID: 17302819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription.
    Meng Q; Turnbough CL; Switzer RL
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10943-8. PubMed ID: 15252202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of transcription of the Bacillus subtilis pyrG gene, encoding cytidine triphosphate synthetase.
    Meng Q; Switzer RL
    J Bacteriol; 2001 Oct; 183(19):5513-22. PubMed ID: 11544212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The number of G residues in the Bacillus subtilis pyrG initially transcribed region governs reiterative transcription-mediated regulation.
    Elsholz AK; Jørgensen CM; Switzer RL
    J Bacteriol; 2007 Mar; 189(5):2176-80. PubMed ID: 17158658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cis-acting sequences of Bacillus subtilis pyrG mRNA essential for regulation by antitermination.
    Meng Q; Switzer RL
    J Bacteriol; 2002 Dec; 184(23):6734-8. PubMed ID: 12426364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTP limitation increases expression of CTP synthase in Lactococcus lactis.
    Jørgensen CM; Hammer K; Martinussen J
    J Bacteriol; 2003 Nov; 185(22):6562-74. PubMed ID: 14594829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase.
    Shin Y; Hedglin M; Murakami KS
    Nucleic Acids Res; 2020 Feb; 48(4):2144-2155. PubMed ID: 31965171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro.
    Chai W; Stewart V
    J Mol Biol; 1998 Oct; 283(2):339-51. PubMed ID: 9769209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene.
    Grundy FJ; Yousef MR; Henkin TM
    J Mol Biol; 2005 Feb; 346(1):73-81. PubMed ID: 15663928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination.
    McDaniel BA; Grundy FJ; Henkin TM
    Mol Microbiol; 2005 Aug; 57(4):1008-21. PubMed ID: 16091040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples.
    Schilling O; Herzberg C; Hertrich T; Vörsmann H; Jessen D; Hübner S; Titgemeyer F; Stülke J
    Nucleic Acids Res; 2006; 34(21):6102-15. PubMed ID: 17074746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
    Zhou Y; Shi T; Mozola MA; Olson ER; Henthorn K; Brown S; Gussin GN; Friedman DI
    J Bacteriol; 2006 Mar; 188(6):2222-32. PubMed ID: 16513752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus subtilis RNA polymerase recruits the transcription factor Spo0A approximately P to stabilize a closed complex during transcription initiation.
    Seredick SD; Spiegelman GB
    J Mol Biol; 2007 Feb; 366(1):19-35. PubMed ID: 17157871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis.
    Jørgensen CM; Hammer K; Jensen PR; Martinussen J
    Eur J Biochem; 2004 Jun; 271(12):2438-45. PubMed ID: 15182359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation.
    Pelchat M; Lapointe J
    Biochem Cell Biol; 1999; 77(4):343-7. PubMed ID: 10546897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors.
    Turnbough CL; Switzer RL
    Microbiol Mol Biol Rev; 2008 Jun; 72(2):266-300, table of contents. PubMed ID: 18535147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA.
    Yousef MR; Grundy FJ; Henkin TM
    J Mol Biol; 2005 Jun; 349(2):273-87. PubMed ID: 15890195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway.
    Murakami KS; Shin Y; Turnbough CL; Molodtsov V
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8211-8216. PubMed ID: 28652344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch.
    Wickiser JK; Winkler WC; Breaker RR; Crothers DM
    Mol Cell; 2005 Apr; 18(1):49-60. PubMed ID: 15808508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.