BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17302826)

  • 1. Sck1 activator coordinates glucose transport and glycolysis and is controlled by Rag8 casein kinase I in Kluyveromyces lactis.
    Neil H; Hnatova M; Wésolowski-Louvel M; Rycovska A; Lemaire M
    Mol Microbiol; 2007 Mar; 63(5):1537-48. PubMed ID: 17302826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis.
    Rolland S; Hnatova M; Lemaire M; Leal-Sanchez J; Wésolowski-Louvel M
    Genetics; 2006 Oct; 174(2):617-26. PubMed ID: 16783006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis.
    Santomartino R; Ottaviano D; Camponeschi I; Landicho TAA; Falato L; Visca A; Soulard A; Lemaire M; Bianchi MM
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31210264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis.
    Cotton P; Soulard A; Wésolowski-Louvel M; Lemaire M
    Eukaryot Cell; 2012 Nov; 11(11):1382-90. PubMed ID: 23002104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease.
    Blaisonneau J; Fukuhara H; Wésolowski-Louvel M
    Mol Gen Genet; 1997 Jan; 253(4):469-77. PubMed ID: 9037107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis.
    Hnatova M; Wésolowski-Louvel M; Dieppois G; Deffaud J; Lemaire M
    Eukaryot Cell; 2008 Aug; 7(8):1299-308. PubMed ID: 18552281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism.
    Neil H; Lemaire M; Wésolowski-Louvel M
    Curr Genet; 2004 Mar; 45(3):129-39. PubMed ID: 14685765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations of the RAG3 gene encoding a regulator of fermentation in Kluyveromyces lactis are suppressed by a mutation of the transcription factor gene KlGCR1.
    Tizzani L; Wésolowski-Louvel M; Forte V; Romitelli F; Salani F; Lemaire M; Neil H; Bianchi MM
    FEMS Yeast Res; 2007 Aug; 7(5):675-82. PubMed ID: 17559574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts.
    Cairey-Remonnay A; Deffaud J; Wésolowski-Louvel M; Lemaire M; Soulard A
    Mol Cell Biol; 2015 Feb; 35(4):747-57. PubMed ID: 25512610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1.
    Chen XJ; Wésolowski-Louvel M; Fukuhara H
    Mol Gen Genet; 1992 May; 233(1-2):97-105. PubMed ID: 1603079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis.
    Gorietti D; Zanni E; Palleschi C; Delfini M; Uccelletti D; Saliola M; Miccheli A
    Biochim Biophys Acta; 2014 Jan; 1840(1):556-64. PubMed ID: 24144565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a novel glucose-phosphorylating enzyme in Kluyveromyces lactis.
    Kettner K; Müller EC; Otto A; Rödel G; Breunig KD; Kriegel TM
    FEMS Yeast Res; 2007 Aug; 7(5):683-92. PubMed ID: 17573926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation.
    Destruelle M; Menghini R; Frontali L; Bianchi MM
    Yeast; 1999 Mar; 15(5):361-70. PubMed ID: 10219994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation.
    Lin W; Kovacikova G; Skorupski K
    Mol Microbiol; 2007 May; 64(4):953-67. PubMed ID: 17501920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription regulation of ribosomal protein genes at different growth rates in continuous cultures of Kluyveromyces yeasts.
    Hoekstra R; Groeneveld P; Van Verseveld HW; Stouthamer AH; Planta RJ
    Yeast; 1994 May; 10(5):637-51. PubMed ID: 7524248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of cyan and yellow fluorescent proteins from the Kluyveromyces lactis KlMAL21-KlMAL22 bi-directional promoter.
    Leifso KR; Williams D; Hintz WE
    Biotechnol Lett; 2007 Aug; 29(8):1233-41. PubMed ID: 17492252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis.
    Prior C; Mamessier P; Fukuhara H; Chen XJ; Wesolowski-Louvel M
    Mol Cell Biol; 1993 Jul; 13(7):3882-9. PubMed ID: 8321195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor.
    Liang Y; Gui L; Wei DS; Zheng W; Xing LJ; Li MC
    FEMS Yeast Res; 2009 Mar; 9(2):270-7. PubMed ID: 19076241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 'petite-negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity.
    Bianchi MM; Tizzani L; Destruelle M; Frontali L; Wésolowski-Louvel M
    Mol Microbiol; 1996 Jan; 19(1):27-36. PubMed ID: 8821934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.