BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 17303153)

  • 1. Sorption of two aromatic acids onto iron oxides: experimental study and modeling.
    Hanna K
    J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of 1-hydroxy-2-naphthoic acid to goethite, lepidocrocite and ferrihydrite: batch experiments and infrared study.
    Hanna K; Carteret C
    Chemosphere; 2007 Dec; 70(2):178-86. PubMed ID: 17689586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of two naphthoic acids to goethite surface under flow through conditions.
    Hanna K; Boily JF
    Environ Sci Technol; 2010 Dec; 44(23):8863-9. PubMed ID: 21058642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Fluorescein using different iron oxides as adsorbents: effect of pH.
    Pirillo S; Cornaglia L; Ferreira ML; Rueda EH
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):636-43. PubMed ID: 18308623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.
    Hanna K; Lassabatere L; Bechet B
    Water Res; 2012 Sep; 46(14):4457-67. PubMed ID: 22704930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration.
    Ajouyed O; Hurel C; Ammari M; Ben Allal L; Marmier N
    J Hazard Mater; 2010 Feb; 174(1-3):616-22. PubMed ID: 19818554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite.
    Rovira M; Giménez J; Martínez M; Martínez-Lladó X; de Pablo J; Martí V; Duro L
    J Hazard Mater; 2008 Jan; 150(2):279-84. PubMed ID: 17531378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental factors determining the trace-level sorption of silver and thallium to soils.
    Jacobson AR; McBride MB; Baveye P; Steenhuis TS
    Sci Total Environ; 2005 Jun; 345(1-3):191-205. PubMed ID: 15919539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid.
    Guo Z; Li Y; Wu W
    Appl Radiat Isot; 2009 Jun; 67(6):996-1000. PubMed ID: 19303312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of silicates on goethite, hematite, and magnetite: experiments and modelling.
    Jordan N; Marmier N; Lomenech C; Giffaut E; Ehrhardt JJ
    J Colloid Interface Sci; 2007 Aug; 312(2):224-9. PubMed ID: 17467724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of triazoles to soil and iron minerals.
    Jia Y; Aagaard P; Breedveld GD
    Chemosphere; 2007 Feb; 67(2):250-8. PubMed ID: 17123582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic sorption onto natural hematite, magnetite, and goethite.
    Giménez J; Martínez M; de Pablo J; Rovira M; Duro L
    J Hazard Mater; 2007 Mar; 141(3):575-80. PubMed ID: 16978766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrous iron sorption by hydrous metal oxides.
    Nano GV; Strathmann TJ
    J Colloid Interface Sci; 2006 May; 297(2):443-54. PubMed ID: 16337955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Complexation Modeling of Copper Sorption by Hydrous Oxides of Iron and Aluminum.
    Karthikeyan KG; Elliott HA
    J Colloid Interface Sci; 1999 Dec; 220(1):88-95. PubMed ID: 10550244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.