These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 17303153)

  • 41. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions.
    Tang Y; Guan X; Wang J; Gao N; McPhail MR; Chusuei CC
    J Hazard Mater; 2009 Nov; 171(1-3):774-9. PubMed ID: 19616377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. pH dependence of ferrous sorption onto two smectite clays.
    Schultz C; Grundl T
    Chemosphere; 2004 Dec; 57(10):1301-6. PubMed ID: 15519374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).
    Zhang JS; Stanforth RS; Pehkonen SO
    J Colloid Interface Sci; 2007 Feb; 306(1):16-21. PubMed ID: 17056055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sorption and transport of salicylate in a porous heterogeneous medium of silica quartz and goethite.
    Rusch B; Hanna K; Humbert B
    Environ Sci Technol; 2010 Apr; 44(7):2447-53. PubMed ID: 20192177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The interaction of boron with goethite: experiments and CD-MUSIC modeling.
    Goli E; Rahnemaie R; Hiemstra T; Malakouti MJ
    Chemosphere; 2011 Mar; 82(10):1475-81. PubMed ID: 21185584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Attachment of L-glutamate to rutile (alpha-TiO(2)): a potentiometric, adsorption, and surface complexation study.
    Jonsson CM; Jonsson CL; Sverjensky DA; Cleaves HJ; Hazen RM
    Langmuir; 2009 Oct; 25(20):12127-35. PubMed ID: 19821622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides.
    Katsoyiannis IA; Althoff HW; Bartel H; Jekel M
    Water Res; 2006 Nov; 40(19):3646-52. PubMed ID: 16908045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution.
    Li FB; Li XZ; Li XM; Liu TX; Dong J
    J Colloid Interface Sci; 2007 Jul; 311(2):481-90. PubMed ID: 17451730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ferrous iron on arsenate sorption to amorphous ferric hydroxide.
    Mukiibi M; Ela WP; Sáez AE
    Ann N Y Acad Sci; 2008 Oct; 1140():335-45. PubMed ID: 18991933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling the sorption kinetics of divalent metal ions to hematite.
    Jeon BH; Dempsey BA; Burgos WD; Royer RA; Roden EE
    Water Res; 2004 May; 38(10):2499-504. PubMed ID: 15159153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter.
    Jönsson J; Sjöberg S; Lövgren L
    Water Res; 2006 Mar; 40(5):969-74. PubMed ID: 16487563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides.
    Pokrovsky OS; Viers J; Freydier R
    J Colloid Interface Sci; 2005 Nov; 291(1):192-200. PubMed ID: 15963523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent.
    Deliyanni EA; Peleka EN; Matis KA
    J Hazard Mater; 2007 Mar; 141(1):176-84. PubMed ID: 16916577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy.
    Müller K; Ciminelli VS; Dantas MS; Willscher S
    Water Res; 2010 Nov; 44(19):5660-72. PubMed ID: 20599245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Describing chlorophenol sorption on variable-charge soil using the triple-layer model.
    Cea M; Seaman JC; Jara AA; Mora ML; Diez MC
    J Colloid Interface Sci; 2005 Dec; 292(1):171-8. PubMed ID: 16055143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.
    Dixit S; Hering JG
    Environ Sci Technol; 2003 Sep; 37(18):4182-9. PubMed ID: 14524451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of low pH on nitrate reduction by iron powder.
    Huang YH; Zhang TC
    Water Res; 2004 Jun; 38(11):2631-42. PubMed ID: 15207593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sorptive removal of tetracycline from water by palygorskite.
    Chang PH; Li Z; Yu TL; Munkhbayer S; Kuo TH; Hung YC; Jean JS; Lin KH
    J Hazard Mater; 2009 Jun; 165(1-3):148-55. PubMed ID: 19008045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.