These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17303164)
1. Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure. Sakane I; Hongo K; Motojima F; Murayama S; Mizobata T; Kawata Y J Mol Biol; 2007 Apr; 367(4):1171-85. PubMed ID: 17303164 [TBL] [Abstract][Full Text] [Related]
2. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model. Higurashi T; Nosaka K; Mizobata T; Nagai J; Kawata Y J Mol Biol; 1999 Aug; 291(3):703-13. PubMed ID: 10448048 [TBL] [Abstract][Full Text] [Related]
3. Structural stability of oligomeric chaperonin 10: the role of two beta-strands at the N and C termini in structural stabilization. Sakane I; Ikeda M; Matsumoto C; Higurashi T; Inoue K; Hongo K; Mizobata T; Kawata Y J Mol Biol; 2004 Dec; 344(4):1123-33. PubMed ID: 15544816 [TBL] [Abstract][Full Text] [Related]
4. Mechanical unfolding of covalently linked GroES: evidence of structural subunit intermediates. Sakane I; Hongo K; Mizobata T; Kawata Y Protein Sci; 2009 Jan; 18(1):252-7. PubMed ID: 19177369 [TBL] [Abstract][Full Text] [Related]
5. The structural stability of the co-chaperonin GroES. Boudker O; Todd MJ; Freire E J Mol Biol; 1997 Oct; 272(5):770-9. PubMed ID: 9368656 [TBL] [Abstract][Full Text] [Related]
6. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122 [TBL] [Abstract][Full Text] [Related]
7. Structural stability and solution structure of chaperonin GroES heptamer studied by synchrotron small-angle X-ray scattering. Higurashi T; Hiragi Y; Ichimura K; Seki Y; Soda K; Mizobata T; Kawata Y J Mol Biol; 2003 Oct; 333(3):605-20. PubMed ID: 14556748 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor. Robinson CR; Sauer RT Biochemistry; 1996 Nov; 35(44):13878-84. PubMed ID: 8909284 [TBL] [Abstract][Full Text] [Related]
9. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035 [TBL] [Abstract][Full Text] [Related]
10. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. Chatellier J; Hill F; Fersht AR J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034 [TBL] [Abstract][Full Text] [Related]
11. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043 [TBL] [Abstract][Full Text] [Related]
13. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299 [TBL] [Abstract][Full Text] [Related]
14. Interface mutation in heptameric co-chaperonin protein 10 destabilizes subunits but not interfaces. Brown C; Liao J; Wittung-Stafshede P Arch Biochem Biophys; 2005 Jul; 439(2):175-83. PubMed ID: 15978542 [TBL] [Abstract][Full Text] [Related]
15. Functional consequences of single:double ring transitions in chaperonins: life in the cold. Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Patra AK; Udgaonkar JB Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706 [TBL] [Abstract][Full Text] [Related]
17. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited. Jones H; Preuss M; Wright M; Miller AD Org Biomol Chem; 2006 Apr; 4(7):1223-35. PubMed ID: 16557310 [TBL] [Abstract][Full Text] [Related]
18. Folding and assembly pathways of co-chaperonin proteins 10: Origin of bacterial thermostability. Luke K; Wittung-Stafshede P Arch Biochem Biophys; 2006 Dec; 456(1):8-18. PubMed ID: 17084377 [TBL] [Abstract][Full Text] [Related]
19. Macromolecular crowding extended to a heptameric system: the Co-chaperonin protein 10. Aguilar X; F Weise C; Sparrman T; Wolf-Watz M; Wittung-Stafshede P Biochemistry; 2011 Apr; 50(14):3034-44. PubMed ID: 21375247 [TBL] [Abstract][Full Text] [Related]
20. Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness. Higurashi T; Yagi H; Mizobata T; Kawata Y J Mol Biol; 2005 Sep; 351(5):1057-69. PubMed ID: 16054644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]