BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17303334)

  • 1. Neonatal transection of the corpus callosum affects rotational side preference in adult Swiss mice.
    Manhães AC; Abreu-Villaça Y; Schmidt SL; Filgueiras CC
    Neurosci Lett; 2007 Mar; 415(2):159-63. PubMed ID: 17303334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased lateralization in rotational side preference in male mice rendered acallosal by prenatal gamma irradiation.
    Filgueiras CC; Manhães AC
    Behav Brain Res; 2005 Jul; 162(2):289-98. PubMed ID: 15970223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of callosal agenesis on rotational side preference of BALB/cCF mice in the free swimming test.
    Filgueiras CC; Manhães AC
    Behav Brain Res; 2004 Nov; 155(1):13-25. PubMed ID: 15325775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral hemispherectomy at adulthood asymmetrically affects immobile behavior of male Swiss mice.
    Filgueiras CC; Abreu-Villaça Y; Krahe TE; Manhães AC
    Behav Brain Res; 2006 Sep; 172(1):33-8. PubMed ID: 16697475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Callosal agenesis affects consistency of laterality in a paw preference task in BALB/cCF mice.
    Manhães AC; Schmidt SL; Filgueiras CC
    Behav Brain Res; 2005 Apr; 159(1):43-9. PubMed ID: 15794996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal transection of the corpus callosum affects paw preference lateralization of adult Swiss mice.
    Manhães AC; Krahe TE; Caparelli-Dáquer E; Ribeiro-Carvalho A; Schmidt SL; Filgueiras CC
    Neurosci Lett; 2003 Sep; 348(2):69-72. PubMed ID: 12902020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early ethanol exposure in mice increases laterality of rotational side preference in the free-swimming test.
    Filgueiras CC; Ribeiro-Carvalho A; Nunes F; Abreu-Villaça Y; Manhães AC
    Pharmacol Biochem Behav; 2009 Aug; 93(2):148-54. PubMed ID: 19426755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral effects of corpus callosum transection and environmental enrichment in adult rats.
    Miu AC; Heilman RM; Paşca SP; Stefan CA; Spânu F; Vasiu R; Olteanu AI; Miclea M
    Behav Brain Res; 2006 Sep; 172(1):135-44. PubMed ID: 16764947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contralateral rotatory bias in the free-swimming test after unilateral hemispherectomy in adult Swiss mice.
    Krahe TE; Filgueiras CC; Caparelli-Dáquer EM; Schmidt SL
    Int J Neurosci; 2001 Aug; 108(1-2):21-30. PubMed ID: 11328699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sex and laterality on the rotatory swimming behavior of normal mice.
    Schmidt SL; Filgueiras CC; Krahe TE
    Physiol Behav; 1999 Jan 1-15; 65(4-5):607-16. PubMed ID: 10073458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Behavioral asymmetry in BALB/cCF mice with corpus callosum abnormalities].
    Laroche L; Ward R
    C R Acad Sci III; 1992; 314(12):559-63. PubMed ID: 1521176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters.
    Lent R
    J Comp Neurol; 1984 Mar; 223(4):548-55. PubMed ID: 6715571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mouse model of neurobehavioural response to altered gravity conditions: an ontogenetical study.
    Santucci D; Francia N; Trincia V; Chiarotti F; Aloe L; Alleva E
    Behav Brain Res; 2009 Jan; 197(1):109-18. PubMed ID: 18775454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rotational side preferences on immobile behavior of normal mice in the forced swimming test.
    Krahe TE; Filgueiras CC; Schmidt SL
    Prog Neuropsychopharmacol Biol Psychiatry; 2002 Jan; 26(1):169-76. PubMed ID: 11853109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corpus callosum and cerebral laterality in a modular brain model.
    Wong CW
    Med Hypotheses; 2000 Aug; 55(2):177-82. PubMed ID: 10904437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased axon number in the anterior commissure of mice lacking a corpus callosum.
    Livy DJ; Schalomon PM; Roy M; Zacharias MC; Pimenta J; Lent R; Wahlsten D
    Exp Neurol; 1997 Aug; 146(2):491-501. PubMed ID: 9270060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased asymmetries in 2-deoxyglucose uptake in the brain of freely moving congenitally acallosal mice.
    Magara F; Welker E; Wolfer DP; Drescher-Lindh I; Lipp HP
    Neuroscience; 1998 Nov; 87(1):243-54. PubMed ID: 9722154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of genes implicated in Down syndrome: 2. Laterality and corpus callosum size in mice transpolygenic for Down syndrome chromosomal region -1 (DCR-1).
    Roubertoux PL; Bichler Z; Pinoteau W; Seregaza Z; Fortes S; Jamon M; Smith DJ; Rubin E; Migliore-Samour D; Carlier M
    Behav Genet; 2005 May; 35(3):333-41. PubMed ID: 15864448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of total and partial callosal agenesis on the rotatory behavior of BALB/cCF mice.
    Schmidt SL; Lent R
    Braz J Med Biol Res; 1991; 24(4):417-20. PubMed ID: 1823255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender and cognitive aspects of neonatal and juvenile neuromuscular locomotor development of F1 hybrid mice in swim tests.
    Adencreutz M; Hau J
    Lab Anim; 2008 Jan; 42(1):26-33. PubMed ID: 18348764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.