These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17303564)

  • 1. Stabilizing effect of Zn2+ in native bovine rhodopsin.
    Park PS; Sapra KT; Koliński M; Filipek S; Palczewski K; Muller DJ
    J Biol Chem; 2007 Apr; 282(15):11377-85. PubMed ID: 17303564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal destabilization of rhodopsin and opsin by proteolytic cleavage in bovine rod outer segment disk membranes.
    Landin JS; Katragadda M; Albert AD
    Biochemistry; 2001 Sep; 40(37):11176-83. PubMed ID: 11551216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of a zinc high-affinity binding site in rhodopsin.
    Toledo D; Cordomí A; Proietti MG; Benfatto M; del Valle LJ; Pérez JJ; Garriga P; Sepulcre F
    Photochem Photobiol; 2009; 85(2):479-84. PubMed ID: 19222791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding and assembly of rhodopsin from expressed fragments.
    Ridge KD; Abdulaev NG
    Methods Enzymol; 2000; 315():59-70. PubMed ID: 10736693
    [No Abstract]   [Full Text] [Related]  

  • 8. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of molecular interactions and function by rhodopsin palmitylation.
    Park PS; Sapra KT; Jastrzebska B; Maeda T; Maeda A; Pulawski W; Kono M; Lem J; Crouch RK; Filipek S; Müller DJ; Palczewski K
    Biochemistry; 2009 May; 48(20):4294-304. PubMed ID: 19348429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct zinc binding to purified rhodopsin and disc membranes.
    Shuster TA; Nagy AK; Conly DC; Farber DB
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):123-8. PubMed ID: 1540127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin.
    Yu H; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12033-40. PubMed ID: 10508407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved rhodopsin intradiscal structural motifs mediate stabilization: effects of zinc.
    Gleim S; Stojanovic A; Arehart E; Byington D; Hwa J
    Biochemistry; 2009 Mar; 48(8):1793-800. PubMed ID: 19206210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent disulfide cross-linking in rhodopsin.
    Yu H; Kono M; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12028-32. PubMed ID: 10508406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.
    Albert AD; Watts A; Spooner P; Groebner G; Young J; Yeagle PL
    Biochim Biophys Acta; 1997 Aug; 1328(1):74-82. PubMed ID: 9298947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE; Kraft PC; Dratz EA
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of the effect of hydroxylamine on rhodopsin palmitylation.
    Jackson W; Ablonczy Z; Crouch RK
    Photochem Photobiol; 2008; 84(4):949-55. PubMed ID: 18399918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.