BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17303645)

  • 1. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of force-velocity relation, stiffness and isometric tension in frog single muscle fibres.
    Ambrogi-Lorenzini C; Colomo F; Lombardi V
    J Muscle Res Cell Motil; 1983 Apr; 4(2):177-89. PubMed ID: 6602810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-velocity relation and stiffness in frog single muscle fibres during the rise of tension in an isometric tetanus.
    Lorenzini CA; Colomo F; Lombardi V
    Adv Exp Med Biol; 1984; 170():757-64. PubMed ID: 6611041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile properties of isolated muscle spindles of the frog.
    Edman KA; Radzyukevich T; Kronborg B
    J Physiol; 2002 Jun; 541(Pt 3):905-16. PubMed ID: 12068049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity.
    Ranatunga KW; Roots H; Offer GW
    J Physiol; 2010 Feb; 588(Pt 3):479-93. PubMed ID: 19948657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isometric and isovelocity contractile performance of red muscle fibres from the dogfish Scyliorhinus canicula.
    Lou F; Curtin NA; Woledge RC
    J Exp Biol; 2002 Jun; 205(Pt 11):1585-95. PubMed ID: 12000803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-velocity relation of frog skeletal muscle fibres shortening under continuously changing load.
    Iwamoto H; Sugaya R; Sugi H
    J Physiol; 1990 Mar; 422():185-202. PubMed ID: 2352179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres.
    Piazzesi G; Reconditi M; Dobbie I; Linari M; Boesecke P; Diat O; Irving M; Lombardi V
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):305-12. PubMed ID: 9852315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of 2,3-butanedione monoxime (BDM) on the force-velocity relation in single muscle fibres of the frog.
    Sun YB; Lou F; Edman KA
    Acta Physiol Scand; 1995 Apr; 153(4):325-34. PubMed ID: 7618479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function.
    Edman KA; MĂ„nsson A; Caputo C
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):141-56. PubMed ID: 9288682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depression of tetanic force induced by loaded shortening of frog muscle fibres.
    Edman KA; Caputo C; Lou F
    J Physiol; 1993 Jul; 466():535-52. PubMed ID: 8410705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    LĂ€nnergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.