These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17303691)
1. Protein expression patterns associated with progression of chronic obstructive pulmonary disease in bronchoalveolar lavage of smokers. Plymoth A; Löfdahl CG; Ekberg-Jansson A; Dahlbäck M; Broberg P; Foster M; Fehniger TE; Marko-Varga G Clin Chem; 2007 Apr; 53(4):636-44. PubMed ID: 17303691 [TBL] [Abstract][Full Text] [Related]
2. Rapid proteome analysis of bronchoalveolar lavage samples of lifelong smokers and never-smokers by micro-scale liquid chromatography and mass spectrometry. Plymoth A; Yang Z; Löfdahl CG; Ekberg-Jansson A; Dahlbäck M; Fehniger TE; Marko-Varga G; Hancock WS Clin Chem; 2006 Apr; 52(4):671-9. PubMed ID: 16497942 [TBL] [Abstract][Full Text] [Related]
3. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. Kohler M; Sandberg A; Kjellqvist S; Thomas A; Karimi R; Nyrén S; Eklund A; Thevis M; Sköld CM; Wheelock ÅM J Allergy Clin Immunol; 2013 Mar; 131(3):743-51. PubMed ID: 23146379 [TBL] [Abstract][Full Text] [Related]
4. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. Moré JM; Voelker DR; Silveira LJ; Edwards MG; Chan ED; Bowler RP BMC Pulm Med; 2010 Oct; 10():53. PubMed ID: 20973980 [TBL] [Abstract][Full Text] [Related]
5. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD. Yang M; Kohler M; Heyder T; Forsslund H; Garberg HK; Karimi R; Grunewald J; Berven FS; Magnus Sköld C; Wheelock ÅM Respir Res; 2018 Mar; 19(1):40. PubMed ID: 29514648 [TBL] [Abstract][Full Text] [Related]
6. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Merkel D; Rist W; Seither P; Weith A; Lenter MC Proteomics; 2005 Jul; 5(11):2972-80. PubMed ID: 16075419 [TBL] [Abstract][Full Text] [Related]
7. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Ferhani N; Letuve S; Kozhich A; Thibaudeau O; Grandsaigne M; Maret M; Dombret MC; Sims GP; Kolbeck R; Coyle AJ; Aubier M; Pretolani M Am J Respir Crit Care Med; 2010 May; 181(9):917-27. PubMed ID: 20133931 [TBL] [Abstract][Full Text] [Related]
8. Potential prognostic value of biomarkers in lavage, sputum and serum in a five year clinical follow-up of smokers with and without COPD. Holz O; Waschki B; Roepcke S; Watz H; Lauer G; Faulenbach C; Hohlfeld JM BMC Pulm Med; 2014 Mar; 14():30. PubMed ID: 24581181 [TBL] [Abstract][Full Text] [Related]
9. Protein N-glycosylation in the bronchoalveolar space differs between never-smokers and long-term smokers with and without COPD. Venkatakrishnan V; Thomsson KA; Padra M; Andersson A; Brundin B; Christenson K; Bylund J; Karlsson NG; Lindén A; Lindén SK Glycobiology; 2023 Dec; 33(12):1128-1138. PubMed ID: 37656214 [TBL] [Abstract][Full Text] [Related]
10. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. Sundblad BM; Ji J; Levänen B; Midander K; Julander A; Larsson K; Palmberg L; Lindén A Int J Chron Obstruct Pulmon Dis; 2016; 11():1005-13. PubMed ID: 27274222 [TBL] [Abstract][Full Text] [Related]
11. Levels of IL-32 in Serum, Induced Sputum Supernatant, and Bronchial Lavage Fluid of Patients with Chronic Obstructive Pulmonary Disease. Gasiuniene E; Lavinskiene S; Sakalauskas R; Sitkauskiene B COPD; 2016 Oct; 13(5):569-75. PubMed ID: 27018873 [TBL] [Abstract][Full Text] [Related]
12. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Sethi S; Maloney J; Grove L; Wrona C; Berenson CS Am J Respir Crit Care Med; 2006 May; 173(9):991-8. PubMed ID: 16474030 [TBL] [Abstract][Full Text] [Related]
13. Gender differences in the T-cell profiles of the airways in COPD patients associated with clinical phenotypes. Forsslund H; Yang M; Mikko M; Karimi R; Nyrén S; Engvall B; Grunewald J; Merikallio H; Kaarteenaho R; Wahlström J; Wheelock ÅM; Sköld CM Int J Chron Obstruct Pulmon Dis; 2017; 12():35-48. PubMed ID: 28053515 [TBL] [Abstract][Full Text] [Related]
14. The effect of induced sputum and bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease on neutrophil migration in vitro. Babusyte A; Jeroch J; Stakauskas R; Stravinskaite K; Malakauskas K; Sakalauskas R Medicina (Kaunas); 2010; 46(5):315-22. PubMed ID: 20679746 [TBL] [Abstract][Full Text] [Related]
15. Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction. Forsslund H; Mikko M; Karimi R; Grunewald J; Wheelock ÅM; Wahlström J; Sköld CM Chest; 2014 Apr; 145(4):711-722. PubMed ID: 24264182 [TBL] [Abstract][Full Text] [Related]
16. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Lommatzsch M; Cicko S; Müller T; Lucattelli M; Bratke K; Stoll P; Grimm M; Dürk T; Zissel G; Ferrari D; Di Virgilio F; Sorichter S; Lungarella G; Virchow JC; Idzko M Am J Respir Crit Care Med; 2010 May; 181(9):928-34. PubMed ID: 20093639 [TBL] [Abstract][Full Text] [Related]
17. Microvesicles in bronchoalveolar lavage as a potential biomarker of COPD. Bazzan E; Radu CM; Tinè M; Neri T; Biondini D; Semenzato U; Casara A; Balestro E; Simioni P; Celi A; Cosio MG; Saetta M Am J Physiol Lung Cell Mol Physiol; 2021 Feb; 320(2):L241-L245. PubMed ID: 33146565 [TBL] [Abstract][Full Text] [Related]
18. Human bronchoalveolar lavage: biofluid analysis with special emphasis on sample preparation. Plymoth A; Löfdahl CG; Ekberg-Jansson A; Dahlbäck M; Lindberg H; Fehniger TE; Marko-Varga G Proteomics; 2003 Jun; 3(6):962-72. PubMed ID: 12833521 [TBL] [Abstract][Full Text] [Related]
19. Oxidative stress and airway inflammation in severe exacerbations of COPD. Drost EM; Skwarski KM; Sauleda J; Soler N; Roca J; Agusti A; MacNee W Thorax; 2005 Apr; 60(4):293-300. PubMed ID: 15790984 [TBL] [Abstract][Full Text] [Related]
20. Influence of smoking cessation on airway T lymphocyte subsets in COPD. Roos-Engstrand E; Ekstrand-Hammarström B; Pourazar J; Behndig AF; Bucht A; Blomberg A COPD; 2009 Apr; 6(2):112-20. PubMed ID: 19378224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]