These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17303838)

  • 1. Cardiovascular developmental insights from embryos.
    Keller BB; Liu LJ; Tinney JP; Tobita K
    Ann N Y Acad Sci; 2007 Apr; 1101():377-88. PubMed ID: 17303838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development.
    Phoon CK; Turnbull DH
    Physiol Genomics; 2003 Jun; 14(1):3-15. PubMed ID: 12824473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of hypoxia on early chick embryo growth and cardiovascular function.
    Sharma SK; Lucitti JL; Nordman C; Tinney JP; Tobita K; Keller BB
    Pediatr Res; 2006 Jan; 59(1):116-20. PubMed ID: 16327005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium.
    Tobita K; Liu LJ; Janczewski AM; Tinney JP; Nonemaker JM; Augustine S; Stolz DB; Shroff SG; Keller BB
    Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1829-37. PubMed ID: 16617136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally induced cardiovascular malformations in the chick embryo. Part I. Morphologic and physiologic changes in the embryonic chick heart after caffeine administration.
    Bruyere HJ; Nishikawa T; Uno H; Gilbert JE; Gilbert EF
    Birth Defects Orig Artic Ser; 1987; 23(1):443-8. PubMed ID: 3580558
    [No Abstract]   [Full Text] [Related]  

  • 6. Systolic and diastolic ventricular function in the normal and extra-embryonic venous clipped chicken embryo of stage 24: a pressure-volume loop assessment.
    Stekelenburg-de Vos S; Steendijk P; Ursem NT; Wladimiroff JW; Poelmann RE
    Ultrasound Obstet Gynecol; 2007 Sep; 30(3):325-31. PubMed ID: 17721868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mechanisms controlling cardiovascular development.
    Bentham J; Bhattacharya S
    Ann N Y Acad Sci; 2008 Mar; 1123():10-9. PubMed ID: 18375573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart development: an introduction.
    Opitz JM; Clark EB
    Am J Med Genet; 2000; 97(4):238-47. PubMed ID: 11376435
    [No Abstract]   [Full Text] [Related]  

  • 9. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations.
    Männer J
    Clin Anat; 2009 Jan; 22(1):21-35. PubMed ID: 18661581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardio-respiratory control during early development in the model animal zebrafish.
    Schwerte T
    Acta Histochem; 2009; 111(3):230-43. PubMed ID: 19121852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal-spatial ablation of neural crest in the mouse results in cardiovascular defects.
    Porras D; Brown CB
    Dev Dyn; 2008 Jan; 237(1):153-62. PubMed ID: 18058916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease.
    Keller BB; Kowalski WJ; Tinney JP; Tobita K; Hu N
    J Cardiovasc Dev Dis; 2020 Jun; 7(2):. PubMed ID: 32545681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics and function in heart morphogenesis.
    Bartman T; Hove J
    Dev Dyn; 2005 Jun; 233(2):373-81. PubMed ID: 15830382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle.
    deAlmeida A; McQuinn T; Sedmera D
    Circ Res; 2007 May; 100(9):1363-70. PubMed ID: 17413043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects.
    Kowalski WJ; Pekkan K; Tinney JP; Keller BB
    Front Physiol; 2014; 5():408. PubMed ID: 25374544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive tracking of avian development in vivo by MRI.
    Hogers B; van der Weerd L; Olofsen H; van der Graaf LM; DeRuiter MC; Gittenberger-de Groot AC; Poelmann RE
    NMR Biomed; 2009 May; 22(4):365-73. PubMed ID: 19003815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetics and cardiovascular development.
    Chang CP; Bruneau BG
    Annu Rev Physiol; 2012; 74():41-68. PubMed ID: 22035349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling pathways controlling second heart field development.
    Rochais F; Mesbah K; Kelly RG
    Circ Res; 2009 Apr; 104(8):933-42. PubMed ID: 19390062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of cardiac form and function in ectothermic sauropsids.
    Crossley DA; Burggren WW
    J Morphol; 2009 Nov; 270(11):1400-12. PubMed ID: 19551708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic circuits and the integrative biology of cardiac diseases.
    Chien KR
    Nature; 2000 Sep; 407(6801):227-32. PubMed ID: 11001065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.