These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Electrokinetic transport in nanochannels. 2. Experiments. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574 [TBL] [Abstract][Full Text] [Related]
5. Electrokinetic transport of charged solutes in micro- and nanochannels: the influence of transverse electromigration. Xuan X; Li D Electrophoresis; 2006 Dec; 27(24):5020-31. PubMed ID: 17124708 [TBL] [Abstract][Full Text] [Related]
6. Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Mao Y; Chang S; Yang S; Ouyang Q; Jiang L Nat Nanotechnol; 2007 Jun; 2(6):366-71. PubMed ID: 18654309 [TBL] [Abstract][Full Text] [Related]
7. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements. Das S; Chakraborty S Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026 [TBL] [Abstract][Full Text] [Related]
9. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels. Zhang Y; Gamble TC; Neumann A; Lopez GP; Brueck SR; Petsev DN Lab Chip; 2008 Oct; 8(10):1671-5. PubMed ID: 18813389 [TBL] [Abstract][Full Text] [Related]
10. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes. Petsev DN J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573 [TBL] [Abstract][Full Text] [Related]
11. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations. Maynes D; Tenny J; Webbd BW; Lee ML Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632 [TBL] [Abstract][Full Text] [Related]
12. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. Rodríguez I; Chandrasekhar N Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573 [TBL] [Abstract][Full Text] [Related]
13. How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels. Kosińska ID J Chem Phys; 2006 Jun; 124(24):244707. PubMed ID: 16821996 [TBL] [Abstract][Full Text] [Related]
14. Microsystem for field-amplified electrokinetic trapping preconcentration of DNA at poly(ethylene terephthalate) membranes. Hahn T; O'Sullivan CK; Drese KS Anal Chem; 2009 Apr; 81(8):2904-11. PubMed ID: 19296594 [TBL] [Abstract][Full Text] [Related]
15. The effect of surface charge regulation on conductivity in fluidic nanochannels. Fleharty ME; van Swol F; Petsev DN J Colloid Interface Sci; 2014 Feb; 416():105-11. PubMed ID: 24370409 [TBL] [Abstract][Full Text] [Related]
16. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions. Das S; Chakraborty S Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905 [TBL] [Abstract][Full Text] [Related]
17. A charge-driven molecular water pump. Gong X; Li J; Lu H; Wan R; Li J; Hu J; Fang H Nat Nanotechnol; 2007 Nov; 2(11):709-12. PubMed ID: 18654410 [TBL] [Abstract][Full Text] [Related]
18. Transport of charged samples in fluidic channels with large zeta potentials. Dutta D Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222 [TBL] [Abstract][Full Text] [Related]
19. Charge transport in nanochannels: a molecular theory. Marini Bettolo Marconi U; Melchionna S Langmuir; 2012 Sep; 28(38):13727-40. PubMed ID: 22916965 [TBL] [Abstract][Full Text] [Related]