BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17304606)

  • 1. Temperature dependence of the optical rotation in six bicyclic organic molecules calculated by vibrational averaging.
    Mort BC; Autschbach J
    Chemphyschem; 2007 Mar; 8(4):605-16. PubMed ID: 17304606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of the optical rotation of fenchone calculated by vibrational averaging.
    Mort BC; Autschbach J
    J Phys Chem A; 2006 Oct; 110(40):11381-3. PubMed ID: 17020244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnitude of zero-point vibrational corrections to optical rotation in rigid organic molecules: a time-dependent density functional study.
    Mort BC; Autschbach J
    J Phys Chem A; 2005 Sep; 109(38):8617-23. PubMed ID: 16834261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules.
    Autschbach J; Jensen L; Schatz GC; Tse YC; Krykunov M
    J Phys Chem A; 2006 Feb; 110(7):2461-73. PubMed ID: 16480306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas phase optical rotation calculated from coupled cluster theory with zero-point vibrational corrections from density funcional theory.
    Pedersen TB; Kongsted J; Crawford TD
    Chirality; 2009; 21 Suppl 1():E68-75. PubMed ID: 19743487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules.
    Crawford TD; Stephens PJ
    J Phys Chem A; 2008 Feb; 112(6):1339-45. PubMed ID: 18198852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational corrections to magneto-optical rotation: a computational study.
    Mort BC; Autschbach J
    J Phys Chem A; 2007 Jun; 111(25):5563-71. PubMed ID: 17539612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of vibrational contributions to small-angle optical rotation: Fluoro-oxirane in gas phase and solution.
    Pedersen TB; Kongsted J; Crawford TD; Ruud K
    J Chem Phys; 2009 Jan; 130(3):034310. PubMed ID: 19173524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of absolute configurations of chiral molecules using ab initio time-dependent Density Functional Theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations?
    Stephens PJ; McCann DM; Cheeseman JR; Frisch MJ
    Chirality; 2005; 17 Suppl():S52-64. PubMed ID: 15747317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.
    Mort BC; Autschbach J
    J Am Chem Soc; 2006 Aug; 128(31):10060-72. PubMed ID: 16881634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes.
    McCann DM; Stephens PJ; Cheeseman JR
    J Org Chem; 2004 Dec; 69(25):8709-17. PubMed ID: 15575747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled cluster and density functional theory studies of the vibrational contribution to the optical rotation of (S)-propylene oxide.
    Kongsted J; Pedersen TB; Jensen L; Hansen AE; Mikkelsen KV
    J Am Chem Soc; 2006 Jan; 128(3):976-82. PubMed ID: 16417389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of conformational energies and optical rotation of the most simple chiral alkane.
    Grimme S; Mück-Lichtenfeld C
    Chirality; 2008 Sep; 20(9):1009-15. PubMed ID: 18335485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes.
    McCann DM; Stephens PJ
    J Org Chem; 2006 Aug; 71(16):6074-98. PubMed ID: 16872191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.
    Dracínský M; Kaminský J; Bour P
    J Chem Phys; 2009 Mar; 130(9):094106. PubMed ID: 19275395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model studies of the optical rotation, and theoretical determination of its sign for beta-pinene and trans-pinane.
    Baranowska A; Łaczkowski KZ; Sadlej AJ
    J Comput Chem; 2010 Apr; 31(6):1176-81. PubMed ID: 19777492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of absolute configuration using optical rotation calculated using density functional theory.
    Stephens PJ; Devlin FJ; Cheeseman JR; Frisch MJ; Rosini C
    Org Lett; 2002 Dec; 4(26):4595-8. PubMed ID: 12489938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory calculations of the internal rotations and vibrational spectra of 2-, 3- and 4-formyl pyridine.
    Umar Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1907-13. PubMed ID: 18799348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basis set dependence of coupled cluster optical rotation computations.
    Mach TJ; Crawford TD
    J Phys Chem A; 2011 Sep; 115(35):10045-51. PubMed ID: 21790165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio calculations of nonlinear optical rotation by several small chiral molecules and by uridine stereoisomers.
    Qu W; Tabisz GC
    J Chem Phys; 2006 May; 124(18):184305. PubMed ID: 16709104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.