These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 17304940)
1. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides. Hornby JA; Robinson J; Opp W; Sterling M J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940 [TBL] [Abstract][Full Text] [Related]
2. Rotary and High-Pressure Nozzle Spray Plume Droplet Analysis For Aerially Applied Mosquito Adulticides: Laser Diffraction Characterization. Hornby JA; Robinson J; Sterling M J Am Mosq Control Assoc; 2017 Mar; 33(1):43-49. PubMed ID: 28388318 [TBL] [Abstract][Full Text] [Related]
3. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control. Mount GA J Am Mosq Control Assoc; 1998 Sep; 14(3):305-34. PubMed ID: 9813829 [TBL] [Abstract][Full Text] [Related]
4. A comparison of two ultra-low-volume spray nozzle systems by using a multiple swath scenario for the aerial application of fenthion against adult mosquitoes. Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA J Am Mosq Control Assoc; 2004 Mar; 20(1):36-44. PubMed ID: 15088703 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a new ultra-low volume fuselage spray configuration on Air Force C-130H airplane used for adult mosquito control. Breidenbaugh M; Haagsma K; Latham M; de Szalay F US Army Med Dep J; 2009; ():66-76. PubMed ID: 20084739 [TBL] [Abstract][Full Text] [Related]
6. A comparison of two spray nozzle systems used to aerially apply the ultra-low-volume adulticide fenthion. Dukes J; Zhong H; Greer M; Hester P; Hogan D; Barber JA J Am Mosq Control Assoc; 2004 Mar; 20(1):27-35. PubMed ID: 15088702 [TBL] [Abstract][Full Text] [Related]
7. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS. Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728 [TBL] [Abstract][Full Text] [Related]
8. Characterization of truck-mounted atomization equipment typically used in vector control. Hoffmann WC; Walker TW; Martin DE; Barber JA; Gwinn T; Smith VL; Szumlas D; Lan Y; Fritz BK J Am Mosq Control Assoc; 2007 Sep; 23(3):321-9. PubMed ID: 17939514 [TBL] [Abstract][Full Text] [Related]
9. Direct and indirect drift assessment means. Part 2: wind tunnel experiments. Nuyttens D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825 [TBL] [Abstract][Full Text] [Related]
10. Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation. Nuyttens D; Baetens K; De Schampheleire M; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):749-56. PubMed ID: 19226824 [TBL] [Abstract][Full Text] [Related]
11. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]
12. Estimation of aerosol droplet sizes by using a modified DC-III portable droplet measurement system under laboratory and field conditions. Dennett JA; Stark PM; Vessey NY; Parsons RE; Bueno R J Am Mosq Control Assoc; 2006 Dec; 22(4):707-17. PubMed ID: 17304941 [TBL] [Abstract][Full Text] [Related]
13. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Ferguson JC; Chechetto RG; O'Donnell CC; Dorr GJ; Moore JH; Baker GJ; Powis KJ; Hewitt AJ Pest Manag Sci; 2016 Aug; 72(8):1460-6. PubMed ID: 26732308 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges. Breidenbaugh MS; Haagsma KA; Wojcik GM; De Szalay FA J Am Mosq Control Assoc; 2009 Dec; 25(4):467-73. PubMed ID: 20099594 [TBL] [Abstract][Full Text] [Related]
15. Classification of spray nozzles based on droplet size distributions and wind tunnel tests. De Schamphelerie M; Spanoghe P; Nuyttens D; Baetens K; Cornelis W; Gabriels D; Van der Meeren P Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):201-7. PubMed ID: 17390794 [TBL] [Abstract][Full Text] [Related]
16. A review of ultralow-volume aerial sprays of insecticide for mosquito control. Mount GA; Biery TL; Haile DG J Am Mosq Control Assoc; 1996 Dec; 12(4):601-18. PubMed ID: 9046465 [TBL] [Abstract][Full Text] [Related]
17. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Wang S; Li X; Nuyttens D; Zhang L; Liu Y; Li X Front Plant Sci; 2023; 14():1018626. PubMed ID: 36818846 [TBL] [Abstract][Full Text] [Related]
18. Ground deposition impact of aerially applied fenthion on the fiddler crabs, Uca pugilator. Zhong H; Dukes J; Greer M; Hester P; Shirley M; Anderson B J Am Mosq Control Assoc; 2003 Mar; 19(1):47-52. PubMed ID: 12674534 [TBL] [Abstract][Full Text] [Related]
19. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
20. Aerial optimization and canopy penetration study of Dibrom 14 Concentrate. Brown JR; Reynolds WH; Palmisano C; Taylor V J Am Mosq Control Assoc; 2005 Mar; 21(1):106-13. PubMed ID: 15825773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]