BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17305135)

  • 1. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.
    Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.
    Galdames A; Ruiz-Rubio L; Orueta M; Sánchez-Arzalluz M; Vilas-Vilela JL
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system.
    Busch J; Meißner T; Potthoff A; Oswald SE
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10908-16. PubMed ID: 24859704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe
    Babakhani P; Fagerlund F; Shamsai A; Lowry GV; Phenrat T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7180-7199. PubMed ID: 26300356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review.
    Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J
    Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of electrophoresis for transporting nano-iron in porous media.
    Jones EH; Reynolds DA; Wood AL; Thomas DG
    Ground Water; 2011; 49(2):172-83. PubMed ID: 21449091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC).
    Shi J; Wang J; Wang W; Teng W; Zhang WX
    J Environ Sci (China); 2019 Jul; 81():28-33. PubMed ID: 30975326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media.
    Tsakiroglou C; Terzi K; Sikinioti-Lock A; Hajdu K; Aggelopoulos C
    Sci Total Environ; 2016 Sep; 563-564():866-78. PubMed ID: 26875604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.