These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 17305305)
1. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study. Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305 [TBL] [Abstract][Full Text] [Related]
2. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Wei CY; Chen TB Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system. Ouyang Y Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547 [TBL] [Abstract][Full Text] [Related]
5. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Singh N; Ma LQ Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102 [TBL] [Abstract][Full Text] [Related]
6. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Cao X; Ma LQ; Tu C Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474 [TBL] [Abstract][Full Text] [Related]
7. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Tu C; Ma LQ J Environ Qual; 2002; 31(2):641-7. PubMed ID: 11931457 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Salido AL; Hasty KL; Lim JM; Butcher DJ Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. Natarajan S; Stamps RH; Ma LQ; Saha UK; Hernandez D; Cai Y; Zillioux EJ J Hazard Mater; 2011 Jan; 185(2-3):983-9. PubMed ID: 21051137 [TBL] [Abstract][Full Text] [Related]
10. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653 [TBL] [Abstract][Full Text] [Related]
11. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys. Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304 [TBL] [Abstract][Full Text] [Related]
12. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Al Agely A; Sylvia DM; Ma LQ J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719 [TBL] [Abstract][Full Text] [Related]
13. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Caille N; Swanwick S; Zhao FJ; McGrath SP Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279 [TBL] [Abstract][Full Text] [Related]
14. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chen BD; Zhu YG; Smith FA Chemosphere; 2006 Mar; 62(9):1464-73. PubMed ID: 16084565 [TBL] [Abstract][Full Text] [Related]
15. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Fayiga AO; Ma LQ Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282 [TBL] [Abstract][Full Text] [Related]
16. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Bondada BR; Tu S; Ma LQ Sci Total Environ; 2004 Oct; 332(1-3):61-70. PubMed ID: 15336891 [TBL] [Abstract][Full Text] [Related]
17. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata. Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR Chemosphere; 2007 Jan; 66(7):1256-63. PubMed ID: 16934852 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. Mandal A; Purakayastha TJ; Patra AK; Sanyal SK Int J Phytoremediation; 2012 Dec; 14(10):978-95. PubMed ID: 22908659 [TBL] [Abstract][Full Text] [Related]
19. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Cao X; Ma LQ; Shiralipour A Environ Pollut; 2003; 126(2):157-67. PubMed ID: 12927487 [TBL] [Abstract][Full Text] [Related]
20. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Tu C; Ma LQ Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]