These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 17305328)
1. Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. Maass P; Schulz-Gasch T; Stahl M; Rarey M J Chem Inf Model; 2007; 47(2):390-9. PubMed ID: 17305328 [TBL] [Abstract][Full Text] [Related]
2. Virtual screening and scaffold hopping based on GRID molecular interaction fields. Ahlström MM; Ridderström M; Luthman K; Zamora I J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908 [TBL] [Abstract][Full Text] [Related]
3. A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes. Jenkins JL; Glick M; Davies JW J Med Chem; 2004 Dec; 47(25):6144-59. PubMed ID: 15566286 [TBL] [Abstract][Full Text] [Related]
4. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. Renner S; Schwab CH; Gasteiger J; Schneider G J Chem Inf Model; 2006; 46(6):2324-32. PubMed ID: 17125176 [TBL] [Abstract][Full Text] [Related]
5. SHOP: scaffold HOPping by GRID-based similarity searches. Bergmann R; Linusson A; Zamora I J Med Chem; 2007 May; 50(11):2708-17. PubMed ID: 17489578 [TBL] [Abstract][Full Text] [Related]
6. Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques. Ebalunode JO; Ouyang Z; Liang J; Zheng W J Chem Inf Model; 2008 Apr; 48(4):889-901. PubMed ID: 18396858 [TBL] [Abstract][Full Text] [Related]
7. Novel method for the evaluation of 3D conformation generators. Takagi T; Amano M; Tomimoto M J Chem Inf Model; 2009 Jun; 49(6):1377-88. PubMed ID: 19435329 [TBL] [Abstract][Full Text] [Related]
8. Searching for pharmacophoric patterns in databases of three-dimensional chemical structures. Willett P J Mol Recognit; 1995; 8(5):290-303. PubMed ID: 8619950 [TBL] [Abstract][Full Text] [Related]
9. Exploring experimental sources of multiple protein conformations in structure-based drug design. Damm KL; Carlson HA J Am Chem Soc; 2007 Jul; 129(26):8225-35. PubMed ID: 17555316 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised 3D ring template searching as an ideas generator for scaffold hopping: use of the LAMDA, RigFit, and field-based similarity search (FBSS) methods. Bohl M; Loeprecht B; Wendt B; Heritage T; Richmond NJ; Willett P J Chem Inf Model; 2006; 46(5):1882-90. PubMed ID: 16995717 [TBL] [Abstract][Full Text] [Related]
11. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically. Hu Q; Peng Z; Kostrowicki J; Kuki A Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528 [TBL] [Abstract][Full Text] [Related]
12. A third blind test of crystal structure prediction. Day GM; Motherwell WD; Ammon HL; Boerrigter SX; Della Valle RG; Venuti E; Dzyabchenko A; Dunitz JD; Schweizer B; van Eijck BP; Erk P; Facelli JC; Bazterra VE; Ferraro MB; Hofmann DW; Leusen FJ; Liang C; Pantelides CC; Karamertzanis PG; Price SL; Lewis TC; Nowell H; Torrisi A; Scheraga HA; Arnautova YA; Schmidt MU; Verwer P Acta Crystallogr B; 2005 Oct; 61(Pt 5):511-27. PubMed ID: 16186652 [TBL] [Abstract][Full Text] [Related]
13. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. Ebalunode JO; Zheng W J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404 [TBL] [Abstract][Full Text] [Related]
14. Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. Kirchmair J; Ristic S; Eder K; Markt P; Wolber G; Laggner C; Langer T J Chem Inf Model; 2007; 47(6):2182-96. PubMed ID: 17929799 [TBL] [Abstract][Full Text] [Related]
15. Conformational flexibility in the flap domains of ligand-free HIV protease. Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513 [TBL] [Abstract][Full Text] [Related]
16. A self-organizing algorithm for molecular alignment and pharmacophore development. Bandyopadhyay D; Agrafiotis DK J Comput Chem; 2008 Apr; 29(6):965-82. PubMed ID: 17999384 [TBL] [Abstract][Full Text] [Related]
17. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus. Tsantrizos YS Acc Chem Res; 2008 Oct; 41(10):1252-63. PubMed ID: 18681464 [TBL] [Abstract][Full Text] [Related]
18. An efficient tool for identifying inhibitors based on 3D-QSAR and docking using feature-shape pharmacophore of biologically active conformation--a case study with CDK2/cyclinA. Mascarenhas NM; Ghoshal N Eur J Med Chem; 2008 Dec; 43(12):2807-18. PubMed ID: 18037537 [TBL] [Abstract][Full Text] [Related]
19. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics. de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism. Singh G; Senapati S Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]