These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 17305374)
1. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes. Ben Amar N; Saidani H; Deratani A; Palmeri J Langmuir; 2007 Mar; 23(6):2937-52. PubMed ID: 17305374 [TBL] [Abstract][Full Text] [Related]
2. Interplay between the transport of solutes across nanofiltration membranes and the thermal properties of the thin active layer. Saidani H; Ben Amar N; Palmeri J; Deratani A Langmuir; 2010 Feb; 26(4):2574-83. PubMed ID: 19810684 [TBL] [Abstract][Full Text] [Related]
3. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures. Tsuru T; Ogawa K; Kanezashi M; Yoshioka T Langmuir; 2010 Jul; 26(13):10897-905. PubMed ID: 20405860 [TBL] [Abstract][Full Text] [Related]
4. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes. Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761 [TBL] [Abstract][Full Text] [Related]
5. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. Sharma RR; Chellam S J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663 [TBL] [Abstract][Full Text] [Related]
6. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. Sharma RR; Chellam S J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248 [TBL] [Abstract][Full Text] [Related]
7. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. Murthy ZV; Chaudhari LB J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379 [TBL] [Abstract][Full Text] [Related]
8. Desalination of brackish groundwater by direct contact membrane distillation. Hou DY; Wang J; Qu D; Luan ZK; Zhao CW; Ren XJ Water Sci Technol; 2010; 61(8):2013-20. PubMed ID: 20388998 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements. Lanteri Y; Fievet P; Szymczyk A J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573 [TBL] [Abstract][Full Text] [Related]
10. Nanofiltration theory: good co-ion exclusion approximation for single salts. Lefebvre X; Palmeri J J Phys Chem B; 2005 Mar; 109(12):5525-40. PubMed ID: 16851593 [TBL] [Abstract][Full Text] [Related]
11. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes. Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893 [TBL] [Abstract][Full Text] [Related]
12. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127 [TBL] [Abstract][Full Text] [Related]
13. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator. Nghiem LD; Vogel D; Khan S Water Res; 2008 Sep; 42(15):4049-58. PubMed ID: 18678386 [TBL] [Abstract][Full Text] [Related]
14. The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution. Ahmad AL; Tan LS; Abd Shukor SR J Hazard Mater; 2008 Jun; 154(1-3):633-8. PubMed ID: 18055106 [TBL] [Abstract][Full Text] [Related]
15. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater. Benítez FJ; Acero JL; Leal AI; González M J Hazard Mater; 2009 Mar; 162(2-3):1438-45. PubMed ID: 18650003 [TBL] [Abstract][Full Text] [Related]
16. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the pressure-induced potential arising through composite membranes with selective surface layers. Szymczyk A; Sbaï M; Fievet P Langmuir; 2005 Mar; 21(5):1818-26. PubMed ID: 15723477 [TBL] [Abstract][Full Text] [Related]
18. Influence of steric, electric, and dielectric effects on membrane potential. Lanteri Y; Szymczyk A; Fievet P Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229 [TBL] [Abstract][Full Text] [Related]
19. Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: preparation, characterization, and performance evaluation. Gohil JM; Ray P J Colloid Interface Sci; 2009 Oct; 338(1):121-7. PubMed ID: 19608190 [TBL] [Abstract][Full Text] [Related]
20. Experimental and Modeling Study of the Nanofiltration of Alcohol-Based Molecules and Amino Acids by Commercial Membranes. Shahgodari S; Labanda J; Llorens J Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]