These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 17305489)
1. Optimisation methodologies and algorithms for research on catalysis employing high-throughput methods: comparison using the Selox benchmark. Pereira SR; Clerc F; Farrusseng D; van der Waala JC; Maschmeyer T Comb Chem High Throughput Screen; 2007 Feb; 10(2):149-59. PubMed ID: 17305489 [TBL] [Abstract][Full Text] [Related]
2. Implementation of the multi-channel monolith reactor in an optimisation procedure for heterogeneous oxidation catalysts based on genetic algorithms. Breuer C; Lucas M; Schütze FW; Claus P Comb Chem High Throughput Screen; 2007 Jan; 10(1):59-70. PubMed ID: 17266517 [TBL] [Abstract][Full Text] [Related]
3. Combinatorial chemistry and high-throughput screening for the discovery of organocatalysts. Fonseca MH; List B Curr Opin Chem Biol; 2004 Jun; 8(3):319-26. PubMed ID: 15183331 [TBL] [Abstract][Full Text] [Related]
4. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions. Ceberio J; Calvo B; Mendiburu A; Lozano JA Evol Comput; 2019; 27(2):291-311. PubMed ID: 29446983 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening. Antolini E ACS Comb Sci; 2017 Feb; 19(2):47-54. PubMed ID: 27992162 [TBL] [Abstract][Full Text] [Related]
6. The impact of combinatorial methodologies on medicinal chemistry. Sanchez-Martin RM; Mittoo S; Bradley M Curr Top Med Chem; 2004; 4(7):653-69. PubMed ID: 15032680 [TBL] [Abstract][Full Text] [Related]
7. Comparison of single- and multiobjective design of experiment in combinatorial chemistry for the selective dehydrogenation of propane. Llamas-Galilea J; Gobin OC; Schüth F J Comb Chem; 2009; 11(5):907-13. PubMed ID: 19746992 [TBL] [Abstract][Full Text] [Related]
8. Integrating chemists preferences for shape-similarity clustering of series. Baumes LA; Gaudin R; Serna P; Nicoloyannis N; Corma A Comb Chem High Throughput Screen; 2008 May; 11(4):266-82. PubMed ID: 18473737 [TBL] [Abstract][Full Text] [Related]
9. Directed development of high-performance membranes via high-throughput and combinatorial strategies. Bulut M; Gevers LE; Paul JS; Vankelecom IF; Jacobs PA J Comb Chem; 2006; 8(2):168-73. PubMed ID: 16529511 [TBL] [Abstract][Full Text] [Related]
10. Discovery of novel catalytic materials for emissions control using high throughput scanning mass spectrometry. Hagemeyer A; Lesik A; Streukens G; Volpe AF; Turner HW; Weinberg WH; Yaccato K; Brooks C Comb Chem High Throughput Screen; 2007 Feb; 10(2):135-47. PubMed ID: 17305488 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial approaches as a component of high-throughput experimentation (HTE) in catalysis research. Newsam JM; Schüth F Biotechnol Bioeng; 1998-1999; 61(4):203-16. PubMed ID: 10494070 [TBL] [Abstract][Full Text] [Related]
12. A note on bound constraints handling for the IEEE CEC'05 benchmark function suite. Liao T; Molina D; de Oca MA; Stützle T Evol Comput; 2014; 22(2):351-9. PubMed ID: 24479543 [TBL] [Abstract][Full Text] [Related]
13. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms. Gobin OC; Schüth F J Comb Chem; 2008; 10(6):835-46. PubMed ID: 18693763 [TBL] [Abstract][Full Text] [Related]
14. A comparison of global search algorithms for continuous black box optimization. Pošík P; Huyer W; Pál L Evol Comput; 2012; 20(4):509-41. PubMed ID: 22708992 [TBL] [Abstract][Full Text] [Related]
15. High throughput screening of low temperature CO oxidation catalysts using IR thermography. Cypes S; Hagemeyer A; Hogan Z; Lesik A; Streukens G; Volpe AF; Weinberg WH; Yaccato K Comb Chem High Throughput Screen; 2007 Jan; 10(1):25-35. PubMed ID: 17266514 [TBL] [Abstract][Full Text] [Related]
16. High-throughput characterisation of materials by photoluminescence spectroscopy. Atienzar P; Corma A; García H; Serra JM Chemistry; 2004 Nov; 10(23):6043-7. PubMed ID: 15497134 [TBL] [Abstract][Full Text] [Related]
17. Application of statistical 'design of experiments' methods in drug discovery. Tye H Drug Discov Today; 2004 Jun; 9(11):485-91. PubMed ID: 15149624 [TBL] [Abstract][Full Text] [Related]
18. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery. Koyama M; Tsuboi H; Endou A; Takaba H; Kubo M; Del Carpio CA; Miyamoto A Comb Chem High Throughput Screen; 2007 Feb; 10(2):99-110. PubMed ID: 17305485 [TBL] [Abstract][Full Text] [Related]
19. [Combinatorial synthesis: an important methodology in medicinal chemistry]. Seoane Prado C An R Acad Nac Med (Madr); 2005; 122(4):723-37; discussion 737-40. PubMed ID: 16776324 [TBL] [Abstract][Full Text] [Related]