These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17305546)

  • 1. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase.
    Fitzpatrick PF
    Arch Biochem Biophys; 2023 Feb; 735():109518. PubMed ID: 36639008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydrobiopterin binding to aromatic amino acid hydroxylases. Ligand recognition and specificity.
    Teigen K; Dao KK; McKinney JA; Gorren AC; Mayer B; Frøystein NA; Haavik J; Martínez A
    J Med Chem; 2004 Nov; 47(24):5962-71. PubMed ID: 15537351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of the aromatic amino acid hydroxylases.
    Hufton SE; Jennings IG; Cotton RG
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):353-66. PubMed ID: 7487868
    [No Abstract]   [Full Text] [Related]  

  • 7. Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases Through Different Mechanisms.
    Hole M; Jorge-Finnigan A; Underhaug J; Teigen K; Martinez A
    Curr Drug Targets; 2016; 17(13):1515-26. PubMed ID: 26953246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tryptophan hydroxylase phe313 in determining substrate specificity.
    Daubner SC; Moran GR; Fitzpatrick PF
    Biochem Biophys Res Commun; 2002 Apr; 292(3):639-41. PubMed ID: 11922614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2.
    Calvo AC; Scherer T; Pey AL; Ying M; Winge I; McKinney J; Haavik J; Thöny B; Martinez A
    J Neurochem; 2010 Aug; 114(3):853-63. PubMed ID: 20492352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a peroxide shunt in the tetrahydropterin-dependent aromatic amino acid monooxygenases.
    Pavon JA; Fitzpatrick PF
    J Am Chem Soc; 2009 Apr; 131(13):4582-3. PubMed ID: 19281164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "7-tetrahydrobiopterin," a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydroxylases.
    Davis MD; Ribeiro P; Tipper J; Kaufman S
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10109-13. PubMed ID: 1359535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of aromatic amino acid hydroxylation.
    Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(48):14083-91. PubMed ID: 14640675
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction energies between tetrahydrobiopterin analogues and aromatic residues in tyrosine hydroxylase and phenylalanine hydroxylase.
    Hofto ME; Cross JN; Cafiero M
    J Phys Chem B; 2007 Aug; 111(32):9651-4. PubMed ID: 17658743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase.
    Maass A; Scholz J; Moser A
    Eur J Biochem; 2003 Mar; 270(6):1065-75. PubMed ID: 12631267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease.
    Waløen K; Kleppe R; Martinez A; Haavik J
    Expert Opin Ther Targets; 2017 Feb; 21(2):167-180. PubMed ID: 27973928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.
    Daubner SC; Hillas PJ; Fitzpatrick PF
    Biochemistry; 1997 Sep; 36(39):11574-82. PubMed ID: 9305947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis.
    Martínez A; Knappskog PM; Haavik J
    Curr Med Chem; 2001 Jul; 8(9):1077-91. PubMed ID: 11472242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis.
    Chadha N; Tiwari AK; Kumar V; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(3):573-83. PubMed ID: 24628256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some properties of bovine pineal tryptophan hydroxylase.
    Ichiyama A; Hasegawa H; Tohyama C; Dohmoto C; Kataoka T
    Adv Exp Med Biol; 1976; 74():103-17. PubMed ID: 785974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metal ligand mutants of phenylalanine hydroxylase: Insights into the plasticity of a 2-histidine-1-carboxylate triad.
    Li J; Fitzpatrick PF
    Arch Biochem Biophys; 2008 Jul; 475(2):164-8. PubMed ID: 18477464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.