BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17305605)

  • 1. The effect of disulfide bond on the conformational stability and catalytic activity of beta-propeller phytase.
    Cheng C; Wong KB; Lim BL
    Protein Pept Lett; 2007; 14(2):175-83. PubMed ID: 17305605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of disulfide bonds in the conformational stability and catalytic activity of phytase.
    Wang XY; Meng FG; Zhou HM
    Biochem Cell Biol; 2004 Apr; 82(2):329-34. PubMed ID: 15060628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges.
    Tan H; Miao R; Liu T; Cao X; Wu X; Xie L; Huang Z; Peng W; Gan B
    J Microbiol Biotechnol; 2016 Oct; 26(10):1717-1722. PubMed ID: 27363471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis.
    Tye AJ; Siu FK; Leung TY; Lim BL
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):190-7. PubMed ID: 12111145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of the N-terminal domain of Pseudomonas sp. phytase with Bacillus sp. phytase and its effects on optimal temperature and catalytic efficiency.
    Jang WJ; Lee JM; Tawheed Hasan M; Kong IS
    Enzyme Microb Technol; 2019 Jul; 126():69-76. PubMed ID: 31000166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase.
    Ullah AH; Mullaney EJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):311-7. PubMed ID: 8878514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal domain of the beta-propeller phytase of Pseudomonas sp. FB15 plays a role for retention of low-temperature activity and catalytic efficiency.
    Jang WJ; Lee JM; Park HD; Choi YB; Kong IS
    Enzyme Microb Technol; 2018 Oct; 117():84-90. PubMed ID: 30037556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).
    Reddy CS; Achary VM; Manna M; Singh J; Kaul T; Reddy MK
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3058-67. PubMed ID: 25588529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of disulfide bonds on the conformational changes and activities of refolded phytase.
    Song GY; Wang XY; Wang M
    Protein Pept Lett; 2005 Aug; 12(6):533-5. PubMed ID: 16101390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization.
    Mullaney EJ; Locovare H; Sethumadhavan K; Boone S; Lei XG; Ullah AH
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1367-72. PubMed ID: 20376636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crucial role of Pro 257 in the thermostability of Bacillus phytases: biochemical and structural investigation.
    Farhat-Khemakhem A; Ali MB; Boukhris I; Khemakhem B; Maguin E; Bejar S; Chouayekh H
    Int J Biol Macromol; 2013 Mar; 54():9-15. PubMed ID: 23178368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease.
    Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T
    J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function.
    Zhu H; Dupureur CM; Zhang X; Tsai MD
    Biochemistry; 1995 Nov; 34(46):15307-14. PubMed ID: 7578147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency.
    Li Z; Huang H; Yang P; Yuan T; Shi P; Zhao J; Meng K; Yao B
    FEBS J; 2011 Sep; 278(17):3032-40. PubMed ID: 21707924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of substrate-binding site and elucidation of catalytic residue of a phytase from Bacillus sp.
    Osman AA; Babu PR; Venu K; Rao KV; Reddy VD
    Enzyme Microb Technol; 2012 Jun; 51(1):35-9. PubMed ID: 22579388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure.
    Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L
    Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of beta-propeller phytase expressed in transgenic tobacco.
    Chan WL; Lung SC; Lim BL
    Protein Expr Purif; 2006 Mar; 46(1):100-6. PubMed ID: 16137892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.