These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1261 related articles for article (PubMed ID: 17305863)

  • 1. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.
    Kalinowski ST; Taper ML; Marshall TC
    Mol Ecol; 2007 Mar; 16(5):1099-106. PubMed ID: 17305863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical confidence for likelihood-based paternity inference in natural populations.
    Marshall TC; Slate J; Kruuk LE; Pemberton JM
    Mol Ecol; 1998 May; 7(5):639-55. PubMed ID: 9633105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retrospective assessment of the accuracy of the paternity inference program CERVUS.
    Slate J; Marshall T; Pemberton J
    Mol Ecol; 2000 Jun; 9(6):801-8. PubMed ID: 10849296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using genomic relationship likelihood for parentage assignment.
    Grashei KE; Ødegård J; Meuwissen THE
    Genet Sel Evol; 2018 May; 50(1):26. PubMed ID: 29776335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APIS: An auto-adaptive parentage inference software that tolerates missing parents.
    Griot R; Allal F; Brard-Fudulea S; Morvezen R; Haffray P; Phocas F; Vandeputte M
    Mol Ecol Resour; 2020 Mar; 20(2):579-590. PubMed ID: 31609085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age.
    Asher GW; Archer JA; Scott IC; O'Neill KT; Ward J; Littlejohn RP
    Anim Reprod Sci; 2005 Dec; 90(3-4):287-306. PubMed ID: 16298276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection and implementation of single nucleotide polymorphism markers for parentage analysis in crossbred cattle population.
    Hu LR; Li D; Chu Q; Wang YC; Zhou L; Yu Y; Zhang Y; Zhang SL; Usman T; Xie ZQ; Hou SY; Liu L; Shi WH
    Animal; 2021 Jan; 15(1):100066. PubMed ID: 33516033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing parentage inference software: reanalysis of a red deer pedigree.
    Walling CA; Pemberton JM; Hadfield JD; Kruuk LE
    Mol Ecol; 2010 May; 19(9):1914-28. PubMed ID: 20345675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis of erythrocyte superoxide dismutase polymorphism in the genus Cervus.
    Herzog S
    Anim Genet; 1990; 21(4):391-400. PubMed ID: 2090010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies.
    Pemberton JM; Slate J; Bancroft DR; Barrett JA
    Mol Ecol; 1995 Apr; 4(2):249-52. PubMed ID: 7735527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential costs of accounting for genotypic errors in molecular parentage analyses.
    Morrissey MB; Wilson AJ
    Mol Ecol; 2005 Nov; 14(13):4111-21. PubMed ID: 16262862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data.
    Johnson PC; Haydon DT
    Genetics; 2007 Feb; 175(2):827-42. PubMed ID: 17179070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ForeStatistics: A windows-based feature-rich software program for performing statistics in forensic DNA analysis, paternity and relationship testing.
    Rasool N; Hussain W
    Forensic Sci Int; 2020 Feb; 307():110142. PubMed ID: 31927396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A likelihood-based approach for assessment of extra-pair paternity and conspecific brood parasitism in natural populations.
    Lemons PR; Marshall TC; McCloskey SE; Sethi SA; Schmutz JA; Sedinger JS
    Mol Ecol Resour; 2015 Jan; 15(1):107-16. PubMed ID: 24989354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performing parentage analysis for polysomic inheritances based on allelic phenotypes.
    Huang K; Huber G; Ritland K; Dunn DW; Li B
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of novel microsatellite markers and their application for genetic diversity and parentage analyses in sika deer.
    Yang W; Zheng J; Jia B; Wei H; Wang G; Yang F
    Gene; 2018 Feb; 643():68-73. PubMed ID: 29223356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using genotyping-by-sequencing to predict gender in animals.
    Bilton TP; Chappell AJ; Clarke SM; Brauning R; Dodds KG; McEwan JC; Rowe SJ
    Anim Genet; 2019 Jun; 50(3):307-310. PubMed ID: 30957265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COLONY: a program for parentage and sibship inference from multilocus genotype data.
    Jones OR; Wang J
    Mol Ecol Resour; 2010 May; 10(3):551-5. PubMed ID: 21565056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of past introductions on an iconic and economically important species, the red deer of Scotland.
    Pérez-Espona S; Hall RJ; Pérez-Barbería FJ; Glass BC; Ward JF; Pemberton JM
    J Hered; 2013; 104(1):14-22. PubMed ID: 23091222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferrin polymorphism and genetic differentiation in Cervus elaphus L. (European red deer) populations.
    Herzog S; Mushövel C; Hattemer HH; Herzog A
    Heredity (Edinb); 1991 Oct; 67 ( Pt 2)():231-9. PubMed ID: 1757275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.