BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1730618)

  • 21. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP.
    Suzuki CK; Bonifacino JS; Lin AY; Davis MM; Klausner RD
    J Cell Biol; 1991 Jul; 114(2):189-205. PubMed ID: 1649196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro.
    Kassenbrock CK; Garcia PD; Walter P; Kelly RB
    Nature; 1988 May; 333(6168):90-3. PubMed ID: 3129663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum.
    Melnick J; Dul JL; Argon Y
    Nature; 1994 Aug; 370(6488):373-5. PubMed ID: 7913987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for human heavy chain binding protein in the developmental regulation of immunoglobin transport.
    Hendershot LM; Kearney JF
    Mol Immunol; 1988 Jun; 25(6):585-95. PubMed ID: 3139995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BiP binding sequences in antibodies.
    Knarr G; Gething MJ; Modrow S; Buchner J
    J Biol Chem; 1995 Nov; 270(46):27589-94. PubMed ID: 7499221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunocytochemical localization of BiP to the rough endoplasmic reticulum: evidence for protein sorting by selective retention.
    Bole DG; Dowin R; Doriaux M; Jamieson JD
    J Histochem Cytochem; 1989 Dec; 37(12):1817-23. PubMed ID: 2685110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum.
    Knittler MR; Dirks S; Haas IG
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1764-8. PubMed ID: 7878056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP.
    Graham KS; Le A; Sifers RN
    J Biol Chem; 1990 Nov; 265(33):20463-8. PubMed ID: 2122976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome.
    Imamura T; Haruta T; Takata Y; Usui I; Iwata M; Ishihara H; Ishiki M; Ishibashi O; Ueno E; Sasaoka T; Kobayashi M
    J Biol Chem; 1998 May; 273(18):11183-8. PubMed ID: 9556607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unassembled Ig heavy chains do not cycle from BiP in vivo but require light chains to trigger their release.
    Vanhove M; Usherwood YK; Hendershot LM
    Immunity; 2001 Jul; 15(1):105-14. PubMed ID: 11485742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BiP binding keeps ATF6 at bay.
    Sommer T; Jarosch E
    Dev Cell; 2002 Jul; 3(1):1-2. PubMed ID: 12110159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway.
    Pimpl P; Taylor JP; Snowden C; Hillmer S; Robinson DG; Denecke J
    Plant Cell; 2006 Jan; 18(1):198-211. PubMed ID: 16339854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus.
    Hammond C; Helenius A
    J Cell Biol; 1994 Jul; 126(1):41-52. PubMed ID: 8027184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bip/GRP78 but not calnexin associates with a precursor of glycosylphosphatidylinositol-anchored protein.
    Oda K; Wada I; Takami N; Fujiwara T; Misumi Y; Ikehara Y
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):623-30. PubMed ID: 8687409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle.
    Knarr G; Kies U; Bell S; Mayer M; Buchner J
    J Mol Biol; 2002 May; 318(3):611-20. PubMed ID: 12054809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epitope tagging of the human endoplasmic reticulum HSP70 protein, BiP, to facilitate analysis of BiP--substrate interactions.
    Murray PJ; Watowich SS; Lodish HF; Young RA; Hilton DJ
    Anal Biochem; 1995 Aug; 229(2):170-9. PubMed ID: 7485969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association of transport-defective light chains with immunoglobulin heavy chain binding protein.
    Ma J; Kearney JF; Hendershot LM
    Mol Immunol; 1990 Jul; 27(7):623-30. PubMed ID: 2118593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes.
    Winkeler A; Gödderz D; Herzog V; Schmitz A
    FEBS Lett; 2003 Nov; 554(3):439-42. PubMed ID: 14623108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BiP and PDI cooperate in the oxidative folding of antibodies in vitro.
    Mayer M; Kies U; Kammermeier R; Buchner J
    J Biol Chem; 2000 Sep; 275(38):29421-5. PubMed ID: 10893409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein.
    Munro S; Pelham HR
    Cell; 1986 Jul; 46(2):291-300. PubMed ID: 3087629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.