These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17306212)

  • 21. The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase.
    Lipscomb SJ; Lee HJ; Mukherji M; Baldwin JE; Schofield CJ; Lloyd MD
    Eur J Biochem; 2002 Jun; 269(11):2735-9. PubMed ID: 12047382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-coenzyme interactions in adenosylcobalamin-dependent glutamate mutase.
    Huhta MS; Chen HP; Hemann C; Hille CR; Marsh EN
    Biochem J; 2001 Apr; 355(Pt 1):131-7. PubMed ID: 11256957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase. The role of arginine 258.
    Lee HJ; Lloyd MD; Clifton IJ; Harlos K; Dubus A; Baldwin JE; Frere JM; Schofield CJ
    J Biol Chem; 2001 May; 276(21):18290-5. PubMed ID: 11279000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for coupled motion and hydrogen tunneling of the reaction catalyzed by glutamate mutase.
    Cheng MC; Marsh EN
    Biochemistry; 2007 Jan; 46(3):883-9. PubMed ID: 17223710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adenosylcobalamin-dependent glutamate mutase: examination of substrate and coenzyme binding in an engineered fusion protein possessing simplified subunit structure and kinetic properties.
    Chen HP; Marsh EN
    Biochemistry; 1997 Dec; 36(48):14939-45. PubMed ID: 9398218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM; Zapata G; Picone R; Vann WF
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction of adenosylcobalamin-dependent glutamate mutase with 2-thiolglutarate.
    Yoon M; Patwardhan A; Qiao C; Mansoorabadi SO; Menefee AL; Reed GH; Marsh EN
    Biochemistry; 2006 Sep; 45(38):11650-7. PubMed ID: 16981724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coenzyme B(12) dependent glutamate mutase.
    Gruber K; Kratky C
    Curr Opin Chem Biol; 2002 Oct; 6(5):598-603. PubMed ID: 12413543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fragmentation-recombination mechanism of the enzyme glutamate mutase studied by QM/MM simulations.
    Rommel JB; Kästner J
    J Am Chem Soc; 2011 Jul; 133(26):10195-203. PubMed ID: 21612278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-steady-state measurement of intrinsic secondary tritium isotope effects associated with the homolysis of adenosylcobalamin and the formation of 5'-deoxyadensosine in glutamate mutase.
    Cheng MC; Marsh EN
    Biochemistry; 2004 Mar; 43(8):2155-8. PubMed ID: 14979711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward an improved understanding of the glutamate mutase system.
    Sandala GM; Smith DM; Marsh EN; Radom L
    J Am Chem Soc; 2007 Feb; 129(6):1623-33. PubMed ID: 17249667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization.
    Tuinstra RL; Wang CZ; Mitchell GA; Miziorko HM
    Biochemistry; 2004 May; 43(18):5287-95. PubMed ID: 15122894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA.
    Yaneva N; Schuster J; Schäfer F; Lede V; Przybylski D; Paproth T; Harms H; Müller RH; Rohwerder T
    J Biol Chem; 2012 May; 287(19):15502-11. PubMed ID: 22433853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of arginine 97 and lysine 72 as determinants of substrate specificity in cytochrome P450 2C9 (CYP2C9).
    Davies C; Witham K; Scott JR; Pearson A; DeVoss JJ; Graham SE; Gillam EM
    Drug Metab Dispos; 2004 Apr; 32(4):431-6. PubMed ID: 15039296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer in the substrate-dependent suicide inactivation of lysine 5,6-aminomutase.
    Tang KH; Chang CH; Frey PA
    Biochemistry; 2001 May; 40(17):5190-9. PubMed ID: 11318641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between coenzyme B12 analogs and adenosylcobalamin-dependent glutamate mutase from Clostridium tetanomorphum.
    Chen HP; Hsu HJ; Hsu FC; Lai CC; Hsu CH
    FEBS J; 2008 Dec; 275(23):5960-8. PubMed ID: 19021770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the mechanisms of adenosylcobalamin (coenzyme B12)-dependent enzymes from rapid chemical quench experiments.
    Marsh EN
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):336-42. PubMed ID: 19290858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of aspartic acid side chain carboxylate-arginine interaction in substrate selection of arginine 2,3-aminomutase BlsG.
    Luo X; Wang X; Zhang L; Du A; Deng Z; Jiang M; He X
    Protein Sci; 2023 Mar; 32(3):e4584. PubMed ID: 36721314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamics of a transition state analogue inhibitor binding to Escherichia coli chorismate mutase: probing the charge state of an active site residue and its role in inhibitor binding and catalysis.
    Lee AY; Zhang S; Kongsaeree P; Clardy J; Ganem B; Erickson JW; Xie D
    Biochemistry; 1998 Jun; 37(25):9052-7. PubMed ID: 9636050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.