These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17306901)

  • 61. Synthesis and characterization of highly ordered cobalt-magnetite nanocable arrays.
    Daly B; Arnold DC; Kulkarni JS; Kazakova O; Shaw MT; Nikitenko S; Erts D; Morris MA; Holmes JD
    Small; 2006 Nov; 2(11):1299-307. PubMed ID: 17192977
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape.
    Wang L; Prozorov T; Palo PE; Liu X; Vaknin D; Prozorov R; Mallapragada S; Nilsen-Hamilton M
    Biomacromolecules; 2012 Jan; 13(1):98-105. PubMed ID: 22112204
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions.
    Hwang S; Roh KH; Lim DW; Wang G; Uher C; Lahann J
    Phys Chem Chem Phys; 2010 Oct; 12(38):11894-9. PubMed ID: 20844780
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense.
    Schüler D
    Arch Microbiol; 2004 Jan; 181(1):1-7. PubMed ID: 14668979
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.
    Prozorov T; Palo P; Wang L; Nilsen-Hamilton M; Jones D; Orr D; Mallapragada SK; Narasimhan B; Canfield PC; Prozorov R
    ACS Nano; 2007 Oct; 1(3):228-33. PubMed ID: 19206653
    [TBL] [Abstract][Full Text] [Related]  

  • 66. mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1.
    Yang W; Li R; Peng T; Zhang Y; Jiang W; Li Y; Li J
    Res Microbiol; 2010 Oct; 161(8):701-5. PubMed ID: 20674739
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetosome chain superstructure in uncultured magnetotactic bacteria.
    Abraçado LG; Abreu F; Keim CN; Campos AP; Lins U; Farina M
    Phys Biol; 2011 Jan; 7(4):046016. PubMed ID: 21212495
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation.
    Teo BM; Chen F; Hatton TA; Grieser F; Ashokkumar M
    Langmuir; 2009 Mar; 25(5):2593-5. PubMed ID: 19239188
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Magnetochrome: a c-type cytochrome domain specific to magnetotatic bacteria.
    Siponen MI; Adryanczyk G; Ginet N; Arnoux P; Pignol D
    Biochem Soc Trans; 2012 Dec; 40(6):1319-23. PubMed ID: 23176475
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of efficient expression system for protein display on bacterial magnetic particles.
    Yoshino T; Matsunaga T
    Biochem Biophys Res Commun; 2005 Dec; 338(4):1678-81. PubMed ID: 16288989
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of static magnetic field on magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1.
    Wang X; Liang L
    Bioelectromagnetics; 2009 May; 30(4):313-21. PubMed ID: 19165820
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Micelle-assisted synthesis of polyaniline/magnetite nanorods by in situ self-assembly process.
    Ding X; Han D; Wang Z; Xu X; Niu L; Zhang Q
    J Colloid Interface Sci; 2008 Apr; 320(1):341-5. PubMed ID: 18243233
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1.
    Yang CD; Takeyama H; Tanaka T; Hasegawa A; Matsunaga T
    Appl Biochem Biotechnol; 2001; 91-93():155-60. PubMed ID: 11963844
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Delivery of nanogram payloads using magnetic porous silicon microcarriers.
    Thomas JC; Pacholski C; Sailor MJ
    Lab Chip; 2006 Jun; 6(6):782-7. PubMed ID: 16738731
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies.
    Wang W; Bu W; Wang L; Palo PE; Mallapragada S; Nilsen-Hamilton M; Vaknin D
    Langmuir; 2012 Mar; 28(9):4274-82. PubMed ID: 22316331
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species.
    Faivre D; Böttger LH; Matzanke BF; Schüler D
    Angew Chem Int Ed Engl; 2007; 46(44):8495-9. PubMed ID: 17902080
    [No Abstract]   [Full Text] [Related]  

  • 78. Bacterial cell biology: managing magnetosomes.
    Stephens C
    Curr Biol; 2006 May; 16(10):R363-5. PubMed ID: 16713943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Morphological transformations in the magnetite biomineralizing protein Mms6 in iron solutions: a small-angle X-ray scattering study.
    Zhang H; Liu X; Feng S; Wang W; Schmidt-Rohr K; Akinc M; Nilsen-Hamilton M; Vaknin D; Mallapragada S
    Langmuir; 2015 Mar; 31(9):2818-25. PubMed ID: 25669122
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Controlling magnetotactic bacteria through an integrated nanofabricated metallic island and optical microscope approach.
    González LM; Ruder WC; Leduc PR; Messner WC
    Sci Rep; 2014 Feb; 4():4104. PubMed ID: 24553101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.