BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 17306944)

  • 1. Application of biochemical and X-ray diffraction analyses to establish the postmortem interval.
    Prieto-Castelló MJ; Hernández del Rincón JP; Pérez-Sirvent C; Alvarez-Jiménez P; Pérez-Cárceles MD; Osuna E; Luna A
    Forensic Sci Int; 2007 Oct; 172(2-3):112-8. PubMed ID: 17306944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains.
    Pérez-Martínez C; Pérez-Cárceles MD; Legaz I; Prieto-Bonete G; Luna A
    Forensic Sci Int; 2017 Dec; 281():106-112. PubMed ID: 29125988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitreous humor: biochemical constituents in estimation of postmortem interval.
    Jashnani KD; Kale SA; Rupani AB
    J Forensic Sci; 2010 Nov; 55(6):1523-7. PubMed ID: 20666922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postmortem vitreous humor beta-hydroxybutyrate: its utility for the postmortem interpretation of diabetes mellitus.
    Osuna E; Vivero G; Conejero J; Abenza JM; Martínez P; Luna A; Pérez-Cárceles MD
    Forensic Sci Int; 2005 Oct; 153(2-3):189-95. PubMed ID: 16139109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Forensic medical osteological studies in resolving the problems of cadaver identification and of the determination of the time of death (a review)].
    Rubezhanskiĭ AF; Naĭnis IV; Strelets NN
    Sud Med Ekspert; 1979; 22(1):13-7. PubMed ID: 217130
    [No Abstract]   [Full Text] [Related]  

  • 6. Microscopic and chemical examinations for estimating the time since death of skeletal remains--its application to forensic cases.
    Yoshino M
    Nihon Hoigaku Zasshi; 1991 Dec; 45(5-6):379-92. PubMed ID: 1811103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biochemical alteration of soil beneath a decomposing carcass.
    Benninger LA; Carter DO; Forbes SL
    Forensic Sci Int; 2008 Sep; 180(2-3):70-5. PubMed ID: 18752909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of vitreous potassium correlation with time since death in the postmortem range from 2 to 110 hours using capillary ion analysis.
    Bortolotti F; Pascali JP; Davis GG; Smith FP; Brissie RM; Tagliaro F
    Med Sci Law; 2011; 51 Suppl 1():S20-3. PubMed ID: 22021629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical changes of the synovial liquid in corpses with regard to the cause of death. 1: Calcium, inorganic phosphorus, glucose, cholesterol, urea nitrogen, uric acid, proteins, and albumin.
    More DS; Arroyo MC
    J Forensic Sci; 1985 Apr; 30(2):541-6. PubMed ID: 3998700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction.
    Fujisaki K; Tadano S; Sasaki N
    J Biomech; 2006; 39(3):579-86. PubMed ID: 16389098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitreous humor chemistry: the use of potassium concentration for the prediction of the postmortem interval.
    Stephens RJ; Richards RG
    J Forensic Sci; 1987 Mar; 32(2):503-9. PubMed ID: 3572343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive evaluation of pericardial biochemical markers in death investigation.
    Kawamoto O; Michiue T; Ishikawa T; Maeda H
    Forensic Sci Int; 2013 Jan; 224(1-3):73-9. PubMed ID: 23196195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis.
    Dobberstein RC; Huppertz J; von Wurmb-Schwark N; Ritz-Timme S
    Forensic Sci Int; 2008 Aug; 179(2-3):181-91. PubMed ID: 18621493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of protein analysis for detecting pathologies in bone remains.
    Pérez-Martínez C; Prieto-Bonete G; Pérez-Cárceles MD; Luna A
    Forensic Sci Int; 2016 Jan; 258():68-73. PubMed ID: 26674668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of elemental composition of bone tissue by the method of laser mass spectrometry to diagnose of human medico-biological characteristics].
    Krymova TG; Kolkutin VV; Beniaev NE
    Sud Med Ekspert; 2007; 50(5):32-7. PubMed ID: 18050689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for determination of postmortem interval: citrate content of bone.
    Schwarcz HP; Agur K; Jantz LM
    J Forensic Sci; 2010 Nov; 55(6):1516-22. PubMed ID: 20681964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting postmortem tooth loss.
    Durić M; Rakocević Z; Tuller H
    J Forensic Sci; 2004 Nov; 49(6):1313-8. PubMed ID: 15568705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein.
    Ishikawa T; Hamel M; Zhu BL; Li DR; Zhao D; Michiue T; Maeda H
    Forensic Sci Int; 2008 Aug; 179(2-3):135-43. PubMed ID: 18541395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determining postmortem interval by accumulated temperature method].
    Chen LS
    Fa Yi Xue Za Zhi; 2006 Dec; 22(6):438, 458. PubMed ID: 17285867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of postmortem interval from old skeletal remains by image analysis of luminol test results.
    Introna F; Di Vella G; Campobasso CP
    J Forensic Sci; 1999 May; 44(3):535-8. PubMed ID: 10408107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.