These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 17307009)
1. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Myskova J; Svobodova M; Beverley SM; Volf P Microbes Infect; 2007 Mar; 9(3):317-24. PubMed ID: 17307009 [TBL] [Abstract][Full Text] [Related]
2. Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in Coutinho-Abreu IV; Oristian J; de Castro W; Wilson TR; Meneses C; Soares RP; Borges VM; Descoteaux A; Kamhawi S; Valenzuela JG mSphere; 2020 Sep; 5(5):. PubMed ID: 32907950 [TBL] [Abstract][Full Text] [Related]
3. Pathogen-associated molecular patterns (PAMPs) derived from Leishmania and bacteria increase gene expression of antimicrobial peptides and gut surface proteins in sand flies. Vomáčková Kykalová B; Sassù F; Dutra-Rêgo F; Soares RP; Volf P; Loza Telleria E Int J Parasitol; 2024 Aug; 54(10):485-495. PubMed ID: 38626865 [TBL] [Abstract][Full Text] [Related]
4. The role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies. Jecna L; Dostalova A; Wilson R; Seblova V; Chang KP; Bates PA; Volf P Parasitology; 2013 Jul; 140(8):1026-32. PubMed ID: 23611086 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Myšková J; Dostálová A; Pěničková L; Halada P; Bates PA; Volf P Parasit Vectors; 2016 Jul; 9(1):413. PubMed ID: 27457627 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of carbohydrate residues in the midgut of phlebotomines (Diptera: Psychodidae) from colony and field populations from Amazon, Brazil. de Oliveira DM; da Silva BJ; de Sena CB; Lima JA; Vasconcelos Dos Santos T; Silveira FT; Silva EO Exp Parasitol; 2016 Sep; 168():31-8. PubMed ID: 27264642 [TBL] [Abstract][Full Text] [Related]
7. Natural hybrid of Leishmania infantum/L. donovani: development in Phlebotomus tobbi, P. perniciosus and Lutzomyia longipalpis and comparison with non-hybrid strains differing in tissue tropism. Seblova V; Myskova J; Hlavacova J; Votypka J; Antoniou M; Volf P Parasit Vectors; 2015 Nov; 8():605. PubMed ID: 26608249 [TBL] [Abstract][Full Text] [Related]
9. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sand fly vector Lutzomyia longipalpis. Soares RP; Macedo ME; Ropert C; Gontijo NF; Almeida IC; Gazzinelli RT; Pimenta PF; Turco SJ Mol Biochem Parasitol; 2002 May; 121(2):213-24. PubMed ID: 12034455 [TBL] [Abstract][Full Text] [Related]
10. Transmission cycle analysis in a Leishmania infantum focus: Infection rates and blood meal origins in sand flies (Diptera: Psychodidae). Chargui N; Slama D; Haouas N; Rmadi L; Babba H J Vector Ecol; 2018 Dec; 43(2):321-327. PubMed ID: 30408299 [TBL] [Abstract][Full Text] [Related]
11. Attachment of Leishmania major and Leishmania infantum in the midgut of their respective sand fly vectors Phlebotomus papatasi and Phlebotomus langeroni (Diptera: Psychodidae). El Sawaf BM; Doha SA; Kamel KE; Emam MI J Egypt Soc Parasitol; 2008 Dec; 38(3):833-42. PubMed ID: 19209766 [TBL] [Abstract][Full Text] [Related]
12. Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis. Nogueira PM; Guimarães AC; Assis RR; Sadlova J; Myskova J; Pruzinova K; Hlavackova J; Turco SJ; Torrecilhas AC; Volf P; Soares RP Parasit Vectors; 2017 Dec; 10(1):608. PubMed ID: 29246180 [TBL] [Abstract][Full Text] [Related]
13. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. Jochim RC; Teixeira CR; Laughinghouse A; Mu J; Oliveira F; Gomes RB; Elnaiem DE; Valenzuela JG BMC Genomics; 2008 Jan; 9():15. PubMed ID: 18194529 [TBL] [Abstract][Full Text] [Related]
14. Lower galactosylation levels of the Lipophosphoglycan from Leishmania (Leishmania) major-like strains affect interaction with Phlebotomus papatasi and Lutzomyia longipalpis. Guimarães AC; Nogueira PM; Silva SO; Sadlova J; Pruzinova K; Hlavacova J; Melo MN; Soares RP Mem Inst Oswaldo Cruz; 2018; 113(5):e170333. PubMed ID: 29513819 [TBL] [Abstract][Full Text] [Related]
15. Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis. Alexandre J; Sadlova J; Lestinova T; Vojtkova B; Jancarova M; Podesvova L; Yurchenko V; Dantas-Torres F; Brandão-Filho SP; Volf P Sci Rep; 2020 Feb; 10(1):3566. PubMed ID: 32108151 [TBL] [Abstract][Full Text] [Related]
16. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. Kelly PH; Bahr SM; Serafim TD; Ajami NJ; Petrosino JF; Meneses C; Kirby JR; Valenzuela JG; Kamhawi S; Wilson ME mBio; 2017 Jan; 8(1):. PubMed ID: 28096483 [TBL] [Abstract][Full Text] [Related]
17. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Pimenta PF; Saraiva EM; Rowton E; Modi GB; Garraway LA; Beverley SM; Turco SJ; Sacks DL Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9155-9. PubMed ID: 8090785 [TBL] [Abstract][Full Text] [Related]
18. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction. Di-Blasi T; Lobo AR; Nascimento LM; Córdova-Rojas JL; Pestana K; Marín-Villa M; Tempone AJ; Telleria EL; Ramalho-Ortigão M; McMahon-Pratt D; Traub-Csekö YM Vector Borne Zoonotic Dis; 2015 Mar; 15(3):202-9. PubMed ID: 25793476 [TBL] [Abstract][Full Text] [Related]