These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1730708)

  • 21. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels.
    Romi-Lebrun R; Lebrun B; Martin-Eauclaire MF; Ishiguro M; Escoubas P; Wu FQ; Hisada M; Pongs O; Nakajima T
    Biochemistry; 1997 Nov; 36(44):13473-82. PubMed ID: 9354615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and molecular evidence for Shaker-like K+ channels in rabbit renal papillary epithelial cell line.
    Volk KA; Husted RF; Pruchno CJ; Stokes JB
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F671-8. PubMed ID: 7524363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of channel modulators on cloned large-conductance calcium-activated potassium channels.
    Gribkoff VK; Lum-Ragan JT; Boissard CG; Post-Munson DJ; Meanwell NA; Starrett JE; Kozlowski ES; Romine JL; Trojnacki JT; Mckay MC; Zhong J; Dworetzky SI
    Mol Pharmacol; 1996 Jul; 50(1):206-17. PubMed ID: 8700114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single channel study of a Ca(2+)-activated K+ current associated with ras-induced cell transformation.
    Huang Y; Rane SG
    J Physiol; 1993 Feb; 461():601-18. PubMed ID: 7688809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new type of scorpion Na+-channel-toxin-like polypeptide active on K+ channels.
    Srairi-Abid N; Guijarro JI; Benkhalifa R; Mantegazza M; Cheikh A; Ben Aissa M; Haumont PY; Delepierre M; El Ayeb M
    Biochem J; 2005 Jun; 388(Pt 2):455-64. PubMed ID: 15656785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist.
    Kanyicska B; Freeman ME; Dryer SE
    Endocrinology; 1997 Aug; 138(8):3141-53. PubMed ID: 9231761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-gated potassium channels in brown fat cells.
    Lucero MT; Pappone PA
    J Gen Physiol; 1989 Mar; 93(3):451-72. PubMed ID: 2467964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noxiustoxin and leiurutoxin III, two homologous peptide toxins with binding properties to synaptosomal membrane K+ channels.
    Valdivia HH; Martin BM; Escobar L; Possani LD
    Biochem Int; 1992 Sep; 27(6):953-62. PubMed ID: 1280139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and structural characterization of charybdotoxin, a potent peptidyl inhibitor of the high conductance Ca2(+)-activated K+ channel.
    Sugg EE; Garcia ML; Reuben JP; Patchett AA; Kaczorowski GJ
    J Biol Chem; 1990 Nov; 265(31):18745-8. PubMed ID: 1699936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. KTX3, the kaliotoxin from Buthus occitanus tunetanus scorpion venom: one of an extensive family of peptidyl ligands of potassium channels.
    Meki A; Mansuelle P; Laraba-Djebari F; Oughideni R; Rochat H; Martin-Eauclaire MF
    Toxicon; 2000 Jan; 38(1):105-11. PubMed ID: 10669015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition for block of a Ca2(+)-activated K+ channel by charybdotoxin and tetraethylammonium.
    Miller C
    Neuron; 1988 Dec; 1(10):1003-6. PubMed ID: 2483092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca(2+)-activated K+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins.
    Brugnara C; Armsby CC; De Franceschi L; Crest M; Euclaire MF; Alper SL
    J Membr Biol; 1995 Sep; 147(1):71-82. PubMed ID: 8531201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-activated potassium channels from coronary smooth muscle reconstituted in lipid bilayers.
    Toro L; Vaca L; Stefani E
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1779-89. PubMed ID: 1711788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blockade of voltage-gated outward K+ currents of ramified murine microglia by scorpion peptide toxins.
    Eder C; Klee R; Heinemann U
    Neurosci Lett; 1996 Nov; 219(1):29-32. PubMed ID: 8961296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two subtypes of C current in identified Helix neurons.
    Crest M; Watanabe K; Gola M
    Brain Res; 1990 Jun; 518(1-2):299-302. PubMed ID: 2117989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells.
    Kozak JA; Misler S; Logothetis DE
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):355-70. PubMed ID: 9575286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An intermediate conductance calcium-activated potassium channel in rat visceral sensory afferent neurons.
    Hay M; Kunze DL
    Neurosci Lett; 1994 Feb; 167(1-2):179-82. PubMed ID: 7513840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic currents in single smooth muscle cells of the canine renal artery.
    Gelband CH; Hume JR
    Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charybdotoxin and noxiustoxin, two homologous peptide inhibitors of the K+ (Ca2+) channel.
    Valdivia HH; Smith JS; Martin BM; Coronado R; Possani LD
    FEBS Lett; 1988 Jan; 226(2):280-4. PubMed ID: 2448164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blockade of a KCa channel with synthetic peptides from noxiustoxin: a K+ channel blocker.
    Vaca L; Gurrola GB; Possani LD; Kunze DL
    J Membr Biol; 1993 Jun; 134(2):123-9. PubMed ID: 8411115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.