BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17307288)

  • 1. Stability of an underactuated bipedal gait.
    Mukherjee S; Sangwan V; Taneja A; Seth B
    Biosystems; 2007; 90(2):582-9. PubMed ID: 17307288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).
    D'Août K; Aerts P; De Clercq D; De Meester K; Van Elsacker L
    Am J Phys Anthropol; 2002 Sep; 119(1):37-51. PubMed ID: 12209572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the lower leg during walking: a versatile model of the foot.
    Stefanovic F; Popovic DB
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):63-9. PubMed ID: 19211325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-space analysis of joint angle kinematics in normal treadmill walking.
    Schablowski-Trautmann M; Gerner HJ
    Biomed Tech (Berl); 2006 Dec; 51(5-6):294-8. PubMed ID: 17155863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking.
    Arellano CJ; O'Connor DP; Layne C; Kurz MJ
    J Exp Biol; 2009 Jun; 212(Pt 12):1965-70. PubMed ID: 19483014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP; Holmes PJ
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and stability of lateral plane locomotion on inclines.
    Schmitt J; Bonnono S
    J Theor Biol; 2009 Dec; 261(4):598-609. PubMed ID: 19703469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design.
    Glaister BC; Schoen JA; Orendurff MS; Klute GK
    J Biomech Eng; 2009 Mar; 131(3):034501. PubMed ID: 19154072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The development of A/K prosthesis with the knee joint torque generation mechanism adaptable to walking period].
    Koganezawa K; Kato I
    Iyodenshi To Seitai Kogaku; 1983 Oct; 21(6):445-51. PubMed ID: 6678980
    [No Abstract]   [Full Text] [Related]  

  • 20. On the origin of planar covariation of elevation angles during human locomotion.
    Ivanenko YP; d'Avella A; Poppele RE; Lacquaniti F
    J Neurophysiol; 2008 Apr; 99(4):1890-8. PubMed ID: 18272871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.