These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17307288)

  • 21. A computational framework to predict post-treatment outcome for gait-related disorders.
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    Med Eng Phys; 2008 May; 30(4):434-43. PubMed ID: 17616425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal foot shape for a passive dynamic biped.
    Kwan M; Hubbard M
    J Theor Biol; 2007 Sep; 248(2):331-9. PubMed ID: 17570405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.
    Heinlein B; Kutzner I; Graichen F; Bender A; Rohlmann A; Halder AM; Beier A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):315-26. PubMed ID: 19285767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact dynamics in biped locomotion analysis: two modelling and implementation approaches.
    Addi K; Rodić AD
    Math Biosci Eng; 2010 Jul; 7(3):479-504. PubMed ID: 20578782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
    Kuo AD
    Hum Mov Sci; 2007 Aug; 26(4):617-56. PubMed ID: 17617481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model.
    Kurz MJ; Stergiou N
    J Biomech Eng; 2007 Apr; 129(2):216-22. PubMed ID: 17408326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimentally reduced hip abductor function during walking: Implications for knee joint loads.
    Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H
    J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability in legged locomotion.
    Karcnik T
    Biol Cybern; 2004 Jan; 90(1):51-8. PubMed ID: 14762724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of total knee replacement on dynamic support of the body during walking and stair ascent.
    Mandeville D; Osternig LR; Chou LS
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):787-94. PubMed ID: 17532102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics and control of bipedal locomotion.
    McGeer T
    J Theor Biol; 1993 Aug; 163(3):277-314. PubMed ID: 8246506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling of human walking to optimise the function of ankle-foot orthosis in Guillan-Barré patients with drop foot.
    Jamshidi N; Rostami M; Najarian S; Menhaj MB; Saadatnia M; Firooz S
    Singapore Med J; 2009 Apr; 50(4):412-7. PubMed ID: 19421688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An alternative approach to synthesizing bipedal walking.
    van der Kooij H; Jacobs R; Koopman B; van der Helm F
    Biol Cybern; 2003 Jan; 88(1):46-59. PubMed ID: 12545282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Running on uneven ground: leg adjustment to vertical steps and self-stability.
    Grimmer S; Ernst M; Günther M; Blickhan R
    J Exp Biol; 2008 Sep; 211(Pt 18):2989-3000. PubMed ID: 18775936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patellofemoral interactions in walking, stair ascent, and stair descent using a virtual patella model.
    Bischoff JE; Hertzler JS; Mason JJ
    J Biomech; 2009 Aug; 42(11):1678-84. PubMed ID: 19481213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilizing function of skeletal muscles: an analytical investigation.
    Wagner H; Blickhan R
    J Theor Biol; 1999 Jul; 199(2):163-79. PubMed ID: 10395812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.