These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17307827)

  • 1. Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations.
    Cheng Y; Suen JK; Zhang D; Bond SD; Zhang Y; Song Y; Baker NA; Bajaj CL; Holst MJ; McCammon JA
    Biophys J; 2007 May; 92(10):3397-406. PubMed ID: 17307827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element solution of the steady-state Smoluchowski equation for rate constant calculations.
    Song Y; Zhang Y; Shen T; Bajaj CL; McCammon JA; Baker NA
    Biophys J; 2004 Apr; 86(4):2017-29. PubMed ID: 15041644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods.
    Zhang D; Suen J; Zhang Y; Song Y; Radic Z; Taylor P; Holst MJ; Bajaj C; Baker NA; McCammon JA
    Biophys J; 2005 Mar; 88(3):1659-65. PubMed ID: 15626705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of drug electrostatic diffusion: inhibition rate studies in N1 neuraminidase.
    Cheng Y; Holst MJ; McCammon JA
    Pac Symp Biocomput; 2009; ():281-92. PubMed ID: 19209708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis.
    Song Y; Zhang Y; Bajaj CL; Baker NA
    Biophys J; 2004 Sep; 87(3):1558-66. PubMed ID: 15345536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics.
    Pan W; Daily M; Baker NA
    BMC Biophys; 2015; 8():7. PubMed ID: 25995835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic potentials of proteins in water: a structured continuum approach.
    Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP
    Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic steering at acetylcholine binding sites.
    Meltzer RH; Thompson E; Soman KV; Song XZ; Ebalunode JO; Wensel TG; Briggs JM; Pedersen SE
    Biophys J; 2006 Aug; 91(4):1302-14. PubMed ID: 16751247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.
    Tara S; Elcock AH; Kirchhoff PD; Briggs JM; Radic Z; Taylor P; McCammon JA
    Biopolymers; 1998 Dec; 46(7):465-74. PubMed ID: 9838872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines.
    Almansour AI; Kumar RS; Arumugam N; Basiri A; Kia Y; Ali MA
    Biomed Res Int; 2015; 2015():965987. PubMed ID: 25710037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Studies on Acetylcholinesterases.
    Xu Y; Cheng S; Sussman JL; Silman I; Jiang H
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28796192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
    Zhou YC; Lu B; Huber GA; Holst MJ; McCammon JA
    J Phys Chem B; 2008 Jan; 112(2):270-5. PubMed ID: 18052268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element simulations of acetylcholine diffusion in neuromuscular junctions.
    Tai K; Bond SD; MacMillan HR; Baker NA; Holst MJ; McCammon JA
    Biophys J; 2003 Apr; 84(4):2234-41. PubMed ID: 12668432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic activity versus structural dynamics: the case of acetylcholinesterase tetramer.
    Gorfe AA; Lu B; Yu Z; McCammon JA
    Biophys J; 2009 Aug; 97(3):897-905. PubMed ID: 19651048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholinesterase: electrostatic steering increases the rate of ligand binding.
    Tan RC; Truong TN; McCammon JA; Sussman JL
    Biochemistry; 1993 Jan; 32(2):401-3. PubMed ID: 8422348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.
    Antosiewicz J; Gilson MK; Lee IH; McCammon JA
    Biophys J; 1995 Jan; 68(1):62-8. PubMed ID: 7711269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations.
    Gabdoulline RR; Wade RC
    J Mol Biol; 2001 Mar; 306(5):1139-55. PubMed ID: 11237623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the acetylcholinesterase tetramer.
    Gorfe AA; Chang CE; Ivanov I; McCammon JA
    Biophys J; 2008 Feb; 94(4):1144-54. PubMed ID: 17921202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.