BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17308179)

  • 1. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis.
    Wegkamp A; van Oorschot W; de Vos WM; Smid EJ
    Appl Environ Microbiol; 2007 Apr; 73(8):2673-81. PubMed ID: 17308179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased production of folate by metabolic engineering of Lactococcus lactis.
    Sybesma W; Starrenburg M; Kleerebezem M; Mierau I; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2003 Jun; 69(6):3069-76. PubMed ID: 12788700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids.
    Basset GJ; Quinlivan EP; Ravanel S; Rébeillé F; Nichols BP; Shinozaki K; Seki M; Adams-Phillips LC; Giovannoni JJ; Gregory JF; Hanson AD
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1496-501. PubMed ID: 14745019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New gene responsible for para-aminobenzoate biosynthesis.
    Satoh Y; Kuratsu M; Kobayashi D; Dairi T
    J Biosci Bioeng; 2014 Feb; 117(2):178-183. PubMed ID: 23972426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a minimal growth medium for Lactobacillus plantarum.
    Wegkamp A; Teusink B; de Vos WM; Smid EJ
    Lett Appl Microbiol; 2010 Jan; 50(1):57-64. PubMed ID: 19874488
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhang Y; Anaya-Sanchez A; Portnoy DA
    Infect Immun; 2022 Nov; 90(11):e0020722. PubMed ID: 36317877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of P-aminobenzoic acid by metabolically engineered escherichia coli.
    Koma D; Yamanaka H; Moriyoshi K; Sakai K; Masuda T; Sato Y; Toida K; Ohmoto T
    Biosci Biotechnol Biochem; 2014; 78(2):350-7. PubMed ID: 25036692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes.
    Zhang Y; Bai L; Deng Z
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2450-2459. PubMed ID: 19389784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Improving the production of 4-aminobenzoic in engineered Escherichia coli by combinatorial regulation].
    Xu Y; Lu F; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2019 Sep; 35(9):1650-1661. PubMed ID: 31559747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cultivation conditions on folate production by lactic acid bacteria.
    Sybesma W; Starrenburg M; Tijsseling L; Hoefnagel MH; Hugenholtz J
    Appl Environ Microbiol; 2003 Aug; 69(8):4542-8. PubMed ID: 12902240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of 4-amino 4-deoxychorismate synthase from Escherichia coli.
    Viswanathan VK; Green JM; Nichols BP
    J Bacteriol; 1995 Oct; 177(20):5918-23. PubMed ID: 7592344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivitamin production in Lactococcus lactis using metabolic engineering.
    Sybesma W; Burgess C; Starrenburg M; van Sinderen D; Hugenholtz J
    Metab Eng; 2004 Apr; 6(2):109-15. PubMed ID: 15113564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of
    Yang SS; Hu YB; Wang XD; Gao YR; Li K; Zhang XE; Chen SY; Zhang TY; Gu J; Deng JY
    Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28717039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pab1 gene of Coprinus cinereus encodes a bifunctional protein for para-aminobenzoic acid (PABA) synthesis: implications for the evolution of fused PABA synthases.
    James TY; Boulianne RP; Bottoli AP; Granado JD; Aebi M; Kües U
    J Basic Microbiol; 2002; 42(2):91-103. PubMed ID: 11981873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p-aminobenzoate synthesis in Escherichia coli: kinetic and mechanistic characterization of the amidotransferase PabA.
    Roux B; Walsh CT
    Biochemistry; 1992 Aug; 31(30):6904-10. PubMed ID: 1637823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment.
    Siezen RJ; Renckens B; van Swam I; Peters S; van Kranenburg R; Kleerebezem M; de Vos WM
    Appl Environ Microbiol; 2005 Dec; 71(12):8371-82. PubMed ID: 16332824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the allosteric pathway of 4-amino-4-deoxychorismate synthase.
    Nakamichi Y; Kobayashi J; Toyoda K; Suda M; Hiraga K; Inui M; Watanabe M
    Acta Crystallogr D Struct Biol; 2023 Oct; 79(Pt 10):895-908. PubMed ID: 37712435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, nucleotide sequence and expression in Streptomyces lividans and Escherichia coli of pabB from Lactococcus lactis subsp. lactis NCDO 496.
    Arhin FF; Vining LC
    J Gen Microbiol; 1993 Aug; 139(8):1785-93. PubMed ID: 8409921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.