BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 17308882)

  • 1. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting.
    Huang DL; Zeng GM; Feng CL; Hu S; Lai C; Zhao MH; Su FF; Tang L; Liu HL
    Bioresour Technol; 2010 Jun; 101(11):4062-7. PubMed ID: 20122824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inoculation in composting processes: modifications in lignocellulosic fraction.
    Vargas-García MC; Suárez-Estrella F; López MJ; Moreno J
    Waste Manag; 2007; 27(9):1099-107. PubMed ID: 16996728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial activity during composting of anthracene-contaminated soil.
    Ma Y; Zhang JY; Wong MH
    Chemosphere; 2003 Sep; 52(9):1505-13. PubMed ID: 12867182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste.
    Korniłłowicz-Kowalska T; Bohacz J
    Bioresour Technol; 2010 Feb; 101(4):1268-76. PubMed ID: 19819132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis.
    Amir S; Merlina G; Pinelli E; Winterton P; Revel JC; Hafidi M
    J Hazard Mater; 2008 Nov; 159(2-3):593-601. PubMed ID: 18394794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of lignocellulolytic functional genes and heterogeneity of thermophilic microbes during different wastes composting.
    Li X; Li K; Wang Y; Huang Y; Yang H; Zhu P; Li Q
    Bioresour Technol; 2023 Mar; 372():128697. PubMed ID: 36731616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial succession of lignocellulose degrading bacteria during composting of corn stalk.
    Shi F; Yu H; Zhang N; Wang S; Li P; Yu Q; Liu J; Pei Z
    Bioengineered; 2021 Dec; 12(2):12372-12382. PubMed ID: 34747301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of bacterial communities in vegetable and straw wastes composting by Biolog method].
    Yu HY; Zeng GM; Xi XM; Huang HL; Huang GH
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):98-102. PubMed ID: 17436633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of high-efficient cellulose utilization microorganisms in co-composting of vegetable wastes and flower stalk].
    Huang DY; Lu WJ; Wang HT; Zhou HY; Wang ZC
    Huan Jing Ke Xue; 2004 Mar; 25(2):145-9. PubMed ID: 15202253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L.
    Shukla OP; Rai UN; Dubey S
    Bioresour Technol; 2009 Apr; 100(7):2198-203. PubMed ID: 19081715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of horticultural waste composting on infected plant residues with pathogenic bacteria and fungi: integrated and localized sanitation.
    Suárez-Estrella F; Vargas-García MC; López MJ; Moreno J
    Waste Manag; 2007; 27(7):886-92. PubMed ID: 16839754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of raw materials and bulking agents on the thermophilic composting process.
    Tang JC; Zhou Q; Katayama A
    J Microbiol Biotechnol; 2010 May; 20(5):925-34. PubMed ID: 20519917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbially-enhanced composting of olive mill solid waste (wet husk): bacterial and fungal community dynamics at industrial pilot and farm level.
    Agnolucci M; Cristani C; Battini F; Palla M; Cardelli R; Saviozzi A; Nuti M
    Bioresour Technol; 2013 Apr; 134():10-6. PubMed ID: 23500553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.
    Mathews SL; Pawlak J; Grunden AM
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):2939-54. PubMed ID: 25722022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw.
    Pandey AK; Gaind S; Ali A; Nain L
    Biodegradation; 2009 Jun; 20(3):293-306. PubMed ID: 18839317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of multi-stage strengthening inoculation on bacterial community diversity during composting].
    Dang QL; Li MX; Xi BD; Wei ZM; Liu C; Xia XF; Yang TX; Li Y
    Huan Jing Ke Xue; 2011 Sep; 32(9):2689-95. PubMed ID: 22165240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge.
    Nakasaki K; Tran le TH; Idemoto Y; Abe M; Rollon AP
    Bioresour Technol; 2009 Jan; 100(2):676-82. PubMed ID: 18762416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.