BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 17309281)

  • 1. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.
    Masubuchi N; Makino C; Murayama N
    Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment.
    Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ
    Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactivation of coumarin in rat olfactory mucosal microsomes: Detection of protein covalent binding and identification of reactive intermediates through analysis of glutathione adducts.
    Zhuo X; Zhao W; Zheng J; Humphreys WG; Shu YZ; Zhu M
    Chem Biol Interact; 2009 Oct; 181(2):227-35. PubMed ID: 19576871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism.
    Madsen KG; Olsen J; Skonberg C; Hansen SH; Jurva U
    Chem Res Toxicol; 2007 May; 20(5):821-31. PubMed ID: 17447796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching.
    Leblanc A; Shiao TC; Roy R; Sleno L
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1241-50. PubMed ID: 20391594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semiquantitative method for the determination of reactive metabolite conjugate levels in vitro utilizing liquid chromatography-tandem mass spectrometry and novel quaternary ammonium glutathione analogues.
    Soglia JR; Contillo LG; Kalgutkar AS; Zhao S; Hop CE; Boyd JG; Cole MJ
    Chem Res Toxicol; 2006 Mar; 19(3):480-90. PubMed ID: 16544956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactivation of isothiazoles: minimizing the risk of potential toxicity in drug discovery.
    Teffera Y; Choquette D; Liu J; Colletti AE; Hollis LS; Lin MH; Zhao Z
    Chem Res Toxicol; 2010 Nov; 23(11):1743-52. PubMed ID: 20825217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic activation of a pyrazinone-containing thrombin inhibitor. Evidence for novel biotransformation involving pyrazinone ring oxidation, rearrangement, and covalent binding to proteins.
    Singh R; Silva Elipe MV; Pearson PG; Arison BH; Wong BK; White R; Yu X; Burgey CS; Lin JH; Baillie TA
    Chem Res Toxicol; 2003 Feb; 16(2):198-207. PubMed ID: 12588191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent binding of phenytoin to protein and modulation of phenytoin metabolism by thiols in A/J mouse liver microsomes.
    Roy D; Snodgrass WR
    J Pharmacol Exp Ther; 1990 Mar; 252(3):895-900. PubMed ID: 2319474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of human glutathione S-transferases in the inactivation of reactive metabolites of clozapine.
    Dragovic S; Boerma JS; van Bergen L; Vermeulen NP; Commandeur JN
    Chem Res Toxicol; 2010 Sep; 23(9):1467-76. PubMed ID: 20849150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1.
    Ross MK; Pegram RA
    Toxicol Appl Pharmacol; 2004 Mar; 195(2):166-81. PubMed ID: 14998683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of drug metabolising mutants of cytochrome P450 BM3 (CYP102A1) as biocatalysts for the generation of reactive metabolites.
    Damsten MC; van Vugt-Lussenburg BM; Zeldenthuis T; de Vlieger JS; Commandeur JN; Vermeulen NP
    Chem Biol Interact; 2008 Jan; 171(1):96-107. PubMed ID: 17996858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of ticlopidine in rats: identification of the main biliary metabolite as a glutathione conjugate of ticlopidine S-oxide.
    Shimizu S; Atsumi R; Nakazawa T; Fujimaki Y; Sudo K; Okazaki O
    Drug Metab Dispos; 2009 Sep; 37(9):1904-15. PubMed ID: 19541827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiologically based pharmacokinetic (PB-PK) model for 1,2-dichlorobenzene linked to two possible parameters of toxicity.
    Hissink AM; Van Ommen B; Krüse J; Van Bladeren PJ
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):301-10. PubMed ID: 9266803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocytes.
    Liebler DC; Meredith MJ; Guengerich FP
    Cancer Res; 1985 Jan; 45(1):186-93. PubMed ID: 3965130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the metabolic activation potential of new leads in drug discovery: a case study using ion trap mass spectrometry and tritium labeling techniques.
    Samuel K; Yin W; Stearns RA; Tang YS; Chaudhary AG; Jewell JP; Lanza T; Lin LS; Hagmann WK; Evans DC; Kumar S
    J Mass Spectrom; 2003 Feb; 38(2):211-21. PubMed ID: 12577288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent binding of sulfamethoxazole reactive metabolites to human and rat liver subcellular fractions assessed by immunochemical detection.
    Cribb AE; Nuss CE; Alberts DW; Lamphere DB; Grant DM; Grossman SJ; Spielberg SP
    Chem Res Toxicol; 1996 Mar; 9(2):500-7. PubMed ID: 8839055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and identification of GSH-trapped reactive metabolites using hybrid triple quadruple linear ion trap mass spectrometry.
    Zheng J; Ma L; Xin B; Olah T; Humphreys WG; Zhu M
    Chem Res Toxicol; 2007 May; 20(5):757-66. PubMed ID: 17402749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic activation of troglitazone: identification of a reactive metabolite and mechanisms involved.
    He K; Talaat RE; Pool WF; Reily MD; Reed JE; Bridges AJ; Woolf TF
    Drug Metab Dispos; 2004 Jun; 32(6):639-46. PubMed ID: 15155556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivation of 6,7-dimethyl-2,4-di-1-pyrrolidinyl-7H-pyrrolo[2,3-d]pyrimidine (U-89843) to reactive intermediates that bind covalently to macromolecules and produce genotoxicity.
    Zhao Z; Koeplinger KA; Padbury GE; Hauer MJ; Bundy GL; Banitt LS; Schwartz TM; Zimmermann DC; Harbach PR; Mayo JK; Aaron CS
    Chem Res Toxicol; 1996 Dec; 9(8):1230-9. PubMed ID: 8951224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.