These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17309315)

  • 1. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect.
    Govorov AO; Carmeli I
    Nano Lett; 2007 Mar; 7(3):620-5. PubMed ID: 17309315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin.
    Biesso A; Qian W; El-Sayed MA
    J Am Chem Soc; 2008 Mar; 130(11):3258-9. PubMed ID: 18290646
    [No Abstract]   [Full Text] [Related]  

  • 3. Plasmon-enhanced light harvesting of chlorophylls on near-percolating silver films via one-photon anti-Stokes upconversion.
    Wang YL; Nan F; Liu XL; Zhou L; Peng XN; Zhou ZK; Yu Y; Hao ZH; Wu Y; Zhang W; Wang QQ; Zhang Z
    Sci Rep; 2013; 3():1861. PubMed ID: 23689426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.
    Shabnam N; Pardha-Saradhi P
    PLoS One; 2013; 8(8):e71123. PubMed ID: 23976990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dots.
    Olejnik M; Krajnik B; Kowalska D; Lin G; Mackowski S
    J Phys Condens Matter; 2013 May; 25(19):194103. PubMed ID: 23611979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the photothermal conversion efficiency of gold nanocrystals.
    Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J
    Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.
    Zeng XL; Tang K; Zhou N; Zhou M; Hou HJ; Scheer H; Zhao KH; Noy D
    J Am Chem Soc; 2013 Sep; 135(36):13479-87. PubMed ID: 23941594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles.
    Verkhovtsev AV; Korol AV; Solov'yov AV
    Phys Rev Lett; 2015 Feb; 114(6):063401. PubMed ID: 25723219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode.
    Lebedev N; Trammell SA; Tsoi S; Spano A; Kim JH; Xu J; Twigg ME; Schnur JM
    Langmuir; 2008 Aug; 24(16):8871-6. PubMed ID: 18616302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans.
    Bao Z; Lan CQ
    Colloids Surf B Biointerfaces; 2018 Oct; 170():251-257. PubMed ID: 29935418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single particle plasmon spectroscopy of silver nanowires and gold nanorods.
    N'Gom M; Ringnalda J; Mansfield JF; Agarwal A; Kotov N; Zaluzec NJ; Norris TB
    Nano Lett; 2008 Oct; 8(10):3200-4. PubMed ID: 18778109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark plasmonic breathing modes in silver nanodisks.
    Schmidt FP; Ditlbacher H; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Nano Lett; 2012 Nov; 12(11):5780-3. PubMed ID: 23025804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells.
    Jeong NC; Prasittichai C; Hupp JT
    Langmuir; 2011 Dec; 27(23):14609-14. PubMed ID: 21992773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonically enhanced electron escape from gold nanoparticles and their polarization-dependent excitation transfer along DNA nanowires.
    Wirth J; Garwe F; Meyer R; Csáki A; Stranik O; Fritzsche W
    Nano Lett; 2014 Jul; 14(7):3809-16. PubMed ID: 24884536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.