These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 17310484)

  • 1. Raftlike polyvalent inhibitors of the anthrax toxin: modulating inhibitory potency by formation of lipid microdomains.
    Rai PR; Saraph A; Ashton R; Poon V; Mogridge J; Kane RS
    Angew Chem Int Ed Engl; 2007; 46(13):2207-9. PubMed ID: 17310484
    [No Abstract]   [Full Text] [Related]  

  • 2. Stable and potent polyvalent anthrax toxin inhibitors: raft-inspired domain formation in liposomes that contain PEGylated lipids.
    Rai P; Vance D; Poon V; Mogridge J; Kane RS
    Chemistry; 2008; 14(26):7748-51. PubMed ID: 18666271
    [No Abstract]   [Full Text] [Related]  

  • 3. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins.
    Rai P; Padala C; Poon V; Saraph A; Basha S; Kate S; Tao K; Mogridge J; Kane RS
    Nat Biotechnol; 2006 May; 24(5):582-6. PubMed ID: 16633350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of polyvalent inhibitors of controlled molecular weight: structure-activity relationship for inhibitors of anthrax toxin.
    Gujraty KV; Joshi A; Saraph A; Poon V; Mogridge J; Kane RS
    Biomacromolecules; 2006 Jul; 7(7):2082-5. PubMed ID: 16827573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthrax toxin rafts into cells.
    Kurzchalia T
    J Cell Biol; 2003 Feb; 160(3):295-6. PubMed ID: 12566425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyvalency: a promising strategy for drug design.
    Vance D; Shah M; Joshi A; Kane RS
    Biotechnol Bioeng; 2008 Oct; 101(3):429-34. PubMed ID: 18727104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dominant-negative therapy for anthrax.
    Leppla SH
    Nat Med; 2001 Jun; 7(6):659-60. PubMed ID: 11385497
    [No Abstract]   [Full Text] [Related]  

  • 8. Directed formation of lipid membrane microdomains as high affinity sites for His-tagged proteins.
    Hayden CC; Hwang JS; Abate EA; Kent MS; Sasaki DY
    J Am Chem Soc; 2009 Jul; 131(25):8728-9. PubMed ID: 19505102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pinpointing anthrax-toxin inhibitors.
    Glick M; Grant GH; Richards WG
    Nat Biotechnol; 2002 Feb; 20(2):118-9. PubMed ID: 11821849
    [No Abstract]   [Full Text] [Related]  

  • 10. The inhibition of the interaction between the anthrax toxin and its cellular receptor by an anti-receptor monoclonal antibody.
    Li G; Qu Y; Cai C; Kong Y; Liu S; Zhang J; Zhao J; Fu L; Xu J; Chen W
    Biochem Biophys Res Commun; 2009 Aug; 385(4):591-5. PubMed ID: 19486894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of anthrax lethal factor.
    Gaddis BD; Avramova LV; Chmielewski J
    Bioorg Med Chem Lett; 2007 Aug; 17(16):4575-8. PubMed ID: 17574849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor.
    Hanna ML; Tarasow TM; Perkins J
    Bioorg Chem; 2007 Feb; 35(1):50-8. PubMed ID: 16949126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRP6 holds the key to the entry of anthrax toxin.
    Bann JG; Cegelski L; Hultgren SJ
    Cell; 2006 Mar; 124(6):1119-21. PubMed ID: 16564002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor.
    Kong Y; Guo Q; Yu C; Dong D; Zhao J; Cai C; Hou L; Song X; Fu L; Xu J; Chen W
    FEBS Lett; 2009 Apr; 583(8):1257-60. PubMed ID: 19332063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of potent inhibitors of anthrax toxin based on poly-L-glutamic acid.
    Joshi A; Saraph A; Poon V; Mogridge J; Kane RS
    Bioconjug Chem; 2006; 17(5):1265-9. PubMed ID: 16984137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopolymerization of polydiacetylene in hybrid liposomes: effect of polymerization on stability and response to pathogenic bacterial toxins.
    Thet NT; Jamieson WD; Laabei M; Mercer-Chalmers JD; Jenkins AT
    J Phys Chem B; 2014 May; 118(20):5418-27. PubMed ID: 24806555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combating the threat of anthrax: a quantitative structure-activity relationship approach.
    Verma RP; Hansch C
    Mol Pharm; 2008; 5(5):745-59. PubMed ID: 18611038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial protein toxins and lipids: role in toxin targeting and activity.
    Geny B; Popoff MR
    Biol Cell; 2006 Nov; 98(11):633-51. PubMed ID: 17042741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.
    Patke S; Boggara M; Maheshwari R; Srivastava SK; Arha M; Douaisi M; Martin JT; Harvey IB; Brier M; Rosen T; Mogridge J; Kane RS
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8037-40. PubMed ID: 24706570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel anthrax lethal factor inhibitors generated by combinatorial Pictet-Spengler reaction followed by screening in situ.
    Numa MM; Lee LV; Hsu CC; Bower KE; Wong CH
    Chembiochem; 2005 Jun; 6(6):1002-6. PubMed ID: 15880659
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.