BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17310695)

  • 1. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States.
    Pinder RW; Adams PJ; Pandis SN
    Environ Sci Technol; 2007 Jan; 41(2):380-6. PubMed ID: 17310695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: the eastern United States as a case study.
    Tsimpidi AP; Karydis VA; Pandis SN
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1489-98. PubMed ID: 18200934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PM
    Wu Y; Gu B; Erisman JW; Reis S; Fang Y; Lu X; Zhang X
    Environ Pollut; 2016 Nov; 218():86-94. PubMed ID: 27552041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions.
    Paulot F; Jacob DJ
    Environ Sci Technol; 2014 Jan; 48(2):903-8. PubMed ID: 24370064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.
    Liao KJ; Hou X
    J Air Waste Manag Assoc; 2015 Jun; 65(6):732-42. PubMed ID: 25976486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.
    Heo J; McCoy ST; Adams PJ
    Environ Sci Technol; 2015 Apr; 49(8):5142-50. PubMed ID: 25811231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of PM
    de A Albuquerque TT; West J; de F Andrade M; Ynoue RY; Andreão WL; Dos Santos FS; Maciel FM; Pedruzzi R; de O Mateus V; Martins JA; Martins LD; Nascimento EGS; Moreira DM
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33216-33227. PubMed ID: 31520392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.
    Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ
    Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonia emissions.
    Stewart DR; Saunders E; Perea R; Fitzgerald R; Campbell DE; Stockwell WR
    J Air Waste Manag Assoc; 2019 Feb; 69(2):192-208. PubMed ID: 30296386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal variations of PM
    Cheng B; Wang-Li L; Meskhidze N; Classen J; Bloomfield P
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33181-33191. PubMed ID: 31520377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature.
    Zhao Y; McElroy MB; Xing J; Duan L; Nielsen CP; Lei Y; Hao J
    Sci Total Environ; 2011 Nov; 409(24):5177-87. PubMed ID: 21944199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions.
    Holt J; Selin NE; Solomon S
    Environ Sci Technol; 2015 Apr; 49(8):4834-41. PubMed ID: 25816113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accountability analysis of title IV phase 2 of the 1990 Clean Air Act Amendments.
    Morgenstern RD; Harrington W; Shih JS; Bell ML;
    Res Rep Health Eff Inst; 2012 Nov; (168):5-35. PubMed ID: 23409509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic reduction of acidifying deposition in Finland by decreasing emissions in Finland, Estonia and Russia.
    Tähtinen M; Lehtilä A; Pipatti R; Wistbacka M; Savolainen I
    Sci Total Environ; 1997 Sep; 204(2):177-92. PubMed ID: 9301100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P; Zhang Y; Yan F; Lu Z; Streets D
    Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine particulate matter damages and value added in the US economy.
    Tschofen P; Azevedo IL; Muller NZ
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19857-19862. PubMed ID: 31501345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States.
    Tsimpidi AP; Karydis VA; Pandis SN
    J Air Waste Manag Assoc; 2008 Nov; 58(11):1463-73. PubMed ID: 19044162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-level air pollution changes during a boreal wildland mega-fire.
    Bytnerowicz A; Hsu YM; Percy K; Legge A; Fenn ME; Schilling S; Frączek W; Alexander D
    Sci Total Environ; 2016 Dec; 572():755-769. PubMed ID: 27622696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of reductions in multiple gaseous precursors on secondary inorganic aerosols in winter under a meteorology-based redistributed daily NH
    Ye Z; Li J; Pan Y; Wang Z; Guo X; Cheng L; Tang X; Zhu J; Kong L; Song Y; Xing J; Sun Y; Pan X
    Sci Total Environ; 2022 May; 821():153383. PubMed ID: 35085635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality.
    McDonald-Buller E; Kimura Y; Craig M; McGaughey G; Allen D; Webster M
    Environ Sci Technol; 2016 Feb; 50(3):1611-9. PubMed ID: 26727552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.