These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 17310699)
1. Multiple environmental monitoring techniques for assessing spatial patterns of airborne tungsten. Sheppard PR; Speakman RJ; Farris C; Witten ML Environ Sci Technol; 2007 Jan; 41(2):406-10. PubMed ID: 17310699 [TBL] [Abstract][Full Text] [Related]
2. Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Glascock MD; Farris C; Witten ML Environ Geochem Health; 2007 Oct; 29(5):405-12. PubMed ID: 17345005 [TBL] [Abstract][Full Text] [Related]
3. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health. Sheppard PR; Bierman BJ; Rhodes K; Ridenour G; Witten ML J Environ Public Health; 2012; 2012():509458. PubMed ID: 22523506 [TBL] [Abstract][Full Text] [Related]
4. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Witten ML Environ Monit Assess; 2007 Jul; 130(1-3):511-8. PubMed ID: 17131081 [TBL] [Abstract][Full Text] [Related]
5. Temporal variability of tungsten and cobalt in Fallon, Nevada. Sheppard PR; Speakman RJ; Ridenour G; Witten ML Environ Health Perspect; 2007 May; 115(5):715-9. PubMed ID: 17520058 [TBL] [Abstract][Full Text] [Related]
6. Morphological and chemical characteristics of airborne tungsten particles of Fallon, Nevada. Sheppard PR; Toepfer P; Schumacher E; Rhodes K; Ridenour G; Witten ML Microsc Microanal; 2007 Aug; 13(4):296-303. PubMed ID: 17637079 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Giordano S; Adamo P; Spagnuolo V; Tretiach M; Bargagli R Chemosphere; 2013 Jan; 90(2):292-9. PubMed ID: 22901434 [TBL] [Abstract][Full Text] [Related]
8. Additional analysis of dendrochemical data of Fallon, Nevada. Sheppard PR; Helsel DR; Speakman RJ; Ridenour G; Witten ML Chem Biol Interact; 2012 Apr; 196(3):96-101. PubMed ID: 22227064 [TBL] [Abstract][Full Text] [Related]
9. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany. Boltersdorf SH; Pesch R; Werner W Environ Pollut; 2014 Jun; 189():43-53. PubMed ID: 24631972 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens. State G; Popescu IV; Radulescu C; Macris C; Stihi C; Gheboianu A; Dulama I; Niţescu O Bull Environ Contam Toxicol; 2012 Sep; 89(3):580-6. PubMed ID: 22760846 [TBL] [Abstract][Full Text] [Related]
11. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Gerdol R; Marchesini R; Iacumin P; Brancaleoni L Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254 [TBL] [Abstract][Full Text] [Related]
12. Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Adamo P; Bargagli R; Giordano S; Modenesi P; Monaci F; Pittao E; Spagnuolo V; Tretiach M Environ Pollut; 2008 Mar; 152(1):11-9. PubMed ID: 17664034 [TBL] [Abstract][Full Text] [Related]
13. Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Agnan Y; Séjalon-Delmas N; Probst A Sci Total Environ; 2014 Jul; 487():1-12. PubMed ID: 24751590 [TBL] [Abstract][Full Text] [Related]
14. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Szczepaniak K; Biziuk M Environ Res; 2003 Nov; 93(3):221-30. PubMed ID: 14615231 [TBL] [Abstract][Full Text] [Related]
15. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
16. Moss and lichen biomonitoring of atmospheric mercury: A review. Bargagli R Sci Total Environ; 2016 Dec; 572():216-231. PubMed ID: 27501421 [TBL] [Abstract][Full Text] [Related]
17. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Kłos A; Ziembik Z; Rajfur M; Dołhańczuk-Śródka A; Bochenek Z; Bjerke JW; Tømmervik H; Zagajewski B; Ziółkowski D; Jerz D; Zielińska M; Krems P; Godyń P; Marciniak M; Świsłowski P Sci Total Environ; 2018 Jun; 627():438-449. PubMed ID: 29426166 [TBL] [Abstract][Full Text] [Related]
18. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Paoli L; Winkler A; Guttová A; Sagnotti L; Grassi A; Lackovičová A; Senko D; Loppi S Environ Sci Pollut Res Int; 2017 May; 24(13):12063-12080. PubMed ID: 26875821 [TBL] [Abstract][Full Text] [Related]
19. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review. Augusto S; Máguas C; Branquinho C Environ Pollut; 2013 Sep; 180():330-8. PubMed ID: 23768993 [TBL] [Abstract][Full Text] [Related]
20. Biomonitoring of airborne microplastics and microrubbers in Shiraz, Iran, using lichens and moss. Khodabakhshloo N; Abbasi S; Oleszczuk P; Turner A Environ Geochem Health; 2024 Jun; 46(7):244. PubMed ID: 38851657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]