BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17310699)

  • 1. Multiple environmental monitoring techniques for assessing spatial patterns of airborne tungsten.
    Sheppard PR; Speakman RJ; Farris C; Witten ML
    Environ Sci Technol; 2007 Jan; 41(2):406-10. PubMed ID: 17310699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial patterns of tungsten and cobalt in surface dust of Fallon, Nevada.
    Sheppard PR; Speakman RJ; Ridenour G; Glascock MD; Farris C; Witten ML
    Environ Geochem Health; 2007 Oct; 29(5):405-12. PubMed ID: 17345005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health.
    Sheppard PR; Bierman BJ; Rhodes K; Ridenour G; Witten ML
    J Environ Public Health; 2012; 2012():509458. PubMed ID: 22523506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada.
    Sheppard PR; Speakman RJ; Ridenour G; Witten ML
    Environ Monit Assess; 2007 Jul; 130(1-3):511-8. PubMed ID: 17131081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal variability of tungsten and cobalt in Fallon, Nevada.
    Sheppard PR; Speakman RJ; Ridenour G; Witten ML
    Environ Health Perspect; 2007 May; 115(5):715-9. PubMed ID: 17520058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and chemical characteristics of airborne tungsten particles of Fallon, Nevada.
    Sheppard PR; Toepfer P; Schumacher E; Rhodes K; Ridenour G; Witten ML
    Microsc Microanal; 2007 Aug; 13(4):296-303. PubMed ID: 17637079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique.
    Giordano S; Adamo P; Spagnuolo V; Tretiach M; Bargagli R
    Chemosphere; 2013 Jan; 90(2):292-9. PubMed ID: 22901434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additional analysis of dendrochemical data of Fallon, Nevada.
    Sheppard PR; Helsel DR; Speakman RJ; Ridenour G; Witten ML
    Chem Biol Interact; 2012 Apr; 196(3):96-101. PubMed ID: 22227064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany.
    Boltersdorf SH; Pesch R; Werner W
    Environ Pollut; 2014 Jun; 189():43-53. PubMed ID: 24631972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens.
    State G; Popescu IV; Radulescu C; Macris C; Stihi C; Gheboianu A; Dulama I; Niţescu O
    Bull Environ Contam Toxicol; 2012 Sep; 89(3):580-6. PubMed ID: 22760846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors.
    Gerdol R; Marchesini R; Iacumin P; Brancaleoni L
    Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements.
    Adamo P; Bargagli R; Giordano S; Modenesi P; Monaci F; Pittao E; Spagnuolo V; Tretiach M
    Environ Pollut; 2008 Mar; 152(1):11-9. PubMed ID: 17664034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and distribution of rare earth elements in various lichen and moss species over the last century in France.
    Agnan Y; Séjalon-Delmas N; Probst A
    Sci Total Environ; 2014 Jul; 487():1-12. PubMed ID: 24751590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution.
    Szczepaniak K; Biziuk M
    Environ Res; 2003 Nov; 93(3):221-30. PubMed ID: 14615231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moss and lichen biomonitoring of atmospheric mercury: A review.
    Bargagli R
    Sci Total Environ; 2016 Dec; 572():216-231. PubMed ID: 27501421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland.
    Kłos A; Ziembik Z; Rajfur M; Dołhańczuk-Śródka A; Bochenek Z; Bjerke JW; Tømmervik H; Zagajewski B; Ziółkowski D; Jerz D; Zielińska M; Krems P; Godyń P; Marciniak M; Świsłowski P
    Sci Total Environ; 2018 Jun; 627():438-449. PubMed ID: 29426166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.
    Paoli L; Winkler A; Guttová A; Sagnotti L; Grassi A; Lackovičová A; Senko D; Loppi S
    Environ Sci Pollut Res Int; 2017 May; 24(13):12063-12080. PubMed ID: 26875821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review.
    Augusto S; Máguas C; Branquinho C
    Environ Pollut; 2013 Sep; 180():330-8. PubMed ID: 23768993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomonitoring of airborne microplastics and microrubbers in Shiraz, Iran, using lichens and moss.
    Khodabakhshloo N; Abbasi S; Oleszczuk P; Turner A
    Environ Geochem Health; 2024 Jun; 46(7):244. PubMed ID: 38851657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.