These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17310713)

  • 41. Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp.
    Li P; Li H; Stagnitti F; Wang X; Zhang H; Gong Z; Liu W; Xiong X; Li L; Austin C; Barry DA
    Bull Environ Contam Toxicol; 2005 Sep; 75(3):443-50. PubMed ID: 16385948
    [No Abstract]   [Full Text] [Related]  

  • 42. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).
    Knudsen BE; Ellegaard-Jensen L; Albers CN; Rosendahl S; Aamand J
    Environ Pollut; 2013 Oct; 181():122-7. PubMed ID: 23850628
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film technique.
    Amezcua-Allieri MA; Rodríguez-Vázquez R
    Lett Appl Microbiol; 2006 Mar; 42(3):296-9. PubMed ID: 16478520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regimes and soil contents.
    Woo SH; Lee MW; Park JM
    J Biotechnol; 2004 Jun; 110(3):235-50. PubMed ID: 15163514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of tactic response on the mobilization of motile bacteria through micrometer-sized pores.
    Castilla-Alcantara JC; Akbari A; Ghoshal S; Ortega-Calvo JJ
    Sci Total Environ; 2022 Aug; 832():154938. PubMed ID: 35390372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China.
    Xiao J; Guo L; Wang S; Lu Y
    J Hazard Mater; 2010 Feb; 174(1-3):818-23. PubMed ID: 19853994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inorganic nutrient utilisation by "adapted" Pseudomonas putida strain used in the bioremediation of agricultural soil polluted with crude petroleum.
    Nwachukwu SC; James P; Gurney TR
    J Environ Biol; 2001 Jul; 22(3):153-62. PubMed ID: 12017254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Isolation identification and characterization of halotolerant petroleum-degrading bacteria].
    Wu T; Xie WJ; Yi YL; Li XB; Wang J; Hu XM
    Huan Jing Ke Xue; 2012 Nov; 33(11):3949-55. PubMed ID: 23323430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Facilitated Bacterial Dispersal on the Degradation and Emission of a Desorbing Contaminant.
    Otto S; Banitz T; Thullner M; Harms H; Wick LY
    Environ Sci Technol; 2016 Jun; 50(12):6320-6. PubMed ID: 27195517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.
    Oyelami AO; Okere UV; Orwin KH; De Deyn GB; Jones KC; Semple KT
    Environ Pollut; 2013 Feb; 173():231-7. PubMed ID: 23202655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil.
    Zhao S; Ramette A; Niu GL; Liu H; Zhou NY
    FEMS Microbiol Ecol; 2009 Nov; 70(2):159-67. PubMed ID: 19825042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil.
    Singleton DR; Powell SN; Sangaiah R; Gold A; Ball LM; Aitken MD
    Appl Environ Microbiol; 2005 Mar; 71(3):1202-9. PubMed ID: 15746319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Isolation and identification of a PAHs-degrading strain Gordonia sp. He4 and its dynamics during bioremediation of phenanthrene polluted soil].
    Liu L; Li XW; Liu SJ; Liu ZP
    Huan Jing Ke Xue; 2007 Mar; 28(3):617-22. PubMed ID: 17633644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.
    García Frutos FJ; Escolano O; García S; Babín M; Fernández MD
    J Hazard Mater; 2010 Nov; 183(1-3):806-13. PubMed ID: 20800967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mobilization of Pollutant-Degrading Bacteria by Eukaryotic Zoospores.
    Sungthong R; van West P; Heyman F; Jensen DF; Ortega-Calvo JJ
    Environ Sci Technol; 2016 Jul; 50(14):7633-40. PubMed ID: 27286642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenanthrene-degrading
    Iwabuchi T
    Can J Microbiol; 2022 May; 68(5):315-328. PubMed ID: 35044838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1.
    Khan Z; Roman D; Kintz T; delas Alas M; Yap R; Doty S
    Environ Sci Technol; 2014 Oct; 48(20):12221-8. PubMed ID: 25275224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial mineralization of phenanthrene on thermally activated palygorskite: A
    Biswas B; Sarkar B; Naidu R
    Sci Total Environ; 2017 Feb; 579():709-717. PubMed ID: 27863871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil.
    Richardson SD; Lebron BL; Miller CT; Aitken MD
    Environ Sci Technol; 2011 Jan; 45(2):719-25. PubMed ID: 21162560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.